
cXML/1.0 August 16, 1999

Ariba, Inc. 1

cXML/1.0

Copyright © Ariba, Inc. 1999. All Rights Reserved.

cXML/1.0 August 16, 1999

Ariba, Inc. 2

Table of Contents

CXML/1.0.. 1

Table of Contents .. 2

1 Introduction... 5

2 Protocol specification .. 6
2.1 Request-Response... 6
2.2 cXML Envelope.. 7
2.3 Header .. 8

2.3.1 From... 9
2.3.2 To .. 9
2.3.3 Sender .. 9

2.3.3.1 Credential... 9
2.4 Request... 10
2.5 Response... 10

2.5.1 Status ... 10
2.6 One-Way (Asynchronous) ... 11

2.6.1 Message ... 11
2.6.2 Transport Options... 12

2.6.2.1 HTTP... 12
2.6.2.2 URL-Form-Encoding ... 12

3 Basic and Common Elements.. 15
3.1 Type Entities ... 15

3.1.1 isoLangCode .. 15
3.1.2 unitOfMeasure.. 15
3.1.3 URL ... 15

3.2 Base elements.. 15

4 Order Definitions... 16
4.1 OrderRequest.. 16

4.1.1 OrderRequestHeader .. 16
4.1.1.1 Total .. 17
4.1.1.2 ShipTo/BillTo .. 18
4.1.1.3 Shipping... 18
4.1.1.4 Tax .. 18
4.1.1.5 Payment ... 18

4.1.2 ItemOut.. 18
4.1.2.1 Distribution .. 20

4.2 OrderResponse.. 21

5 PunchOut Definitions.. 22

cXML/1.0 August 16, 1999

Ariba, Inc. 3

5.1 PunchOutSetup* ... 22
5.1.1 PunchOutSetupRequest .. 22

5.1.1.1 BuyerCookie .. 22
5.1.1.2 BrowserFormPost .. 22
5.1.1.3 Extrinsic... 23

5.1.2 PunchOutSetupResponse .. 23
5.1.2.1 StartPage ... 23

5.2 PunchOutOrderMessage.. 23
5.2.1 BuyerCookie .. 24
5.2.2 PunchOutOrderMessageHeader .. 24
5.2.3 ItemIn... 25

5.2.3.1 ItemID ... 25
5.2.3.2 ItemDetail .. 25

6 Catalog Definitions.. 26
6.1 Supplier .. 26

6.1.1 SupplierLocation .. 27
6.1.1.1 OrderMethods and OrderMethod ... 28

6.2 Index... 28
6.2.1 IndexItem, IndexItemAdd, IndexItemDelete, and IndexItemPunchOut 28

6.2.1.1 ItemID ... 29
6.2.1.2 ItemDetail .. 29
6.2.1.3 IndexItemDetail.. 29

6.3 Contract.. 30
6.3.1 ItemSegment .. 30
6.3.2 ContractItem .. 30

7 Subscription Management Definitions ... 31
7.1 Supplier Data .. 31

7.1.1 SupplierListRequest.. 31
7.1.2 SupplierListResponse.. 31
7.1.3 SupplierDataRequest .. 32
7.1.4 SupplierDataResponse .. 32
7.1.5 SupplierChangeMessage ... 33

7.2 Catalog Subscriptions.. 34
7.2.1 Subscription.. 34
7.2.2 SubscriptionListRequest ... 34
7.2.3 SubscriptionListResponse ... 34
7.2.4 SubscriptionContentRequest ... 35
7.2.5 SubscriptionContentResponse... 35
7.2.6 SubscriptionChangeMessage... 36

8 Message Retrieval Definitions... 37
8.1 GetPendingRequest ... 37
8.2 GetPendingResponse... 37

cXML/1.0 August 16, 1999

Ariba, Inc. 4

9 cXML XML Documents.. 39
9.1 cXML.dtd ... 39
9.2 Common.mod ... 40
9.3 Base.mod .. 41
9.4 Supplier.mod... 46
9.5 Item.mod .. 48
9.6 Transaction.mod ... 50
9.7 Transport.mod .. 55
9.8 Contract.mod .. 58
9.9 Index.mod... 59
9.10 Pending.mod ... 62
9.11 Subscription.mod .. 63

cXML/1.0 August 16, 1999

Ariba, Inc. 5

1 Introduction
This document describes the protocol and data formats of Commerce XML (cXML) version 1.0.
It contains all the information you need to implement any of the supported transactions from
either the client or the server system perspective. Both the protocol interactions and business
documents contained in the transactions are discussed in depth.

cXML is designed to provide a simple XML-based protocol between entities engaged in
Business-to-Business eCommerce transactions over the Internet. Ease of implementation has been
a primary focus along with an emphasis on prototype implementations to discover remaining
issues. Most of the feedback that has been incorporated into the specification is based on ideas
and solutions found during actual implementations between interacting companies and their
systems.

The rest of this document is structured as follows: first, the protocol specification that describes
how cXML documents are exchanged between the parties; second, a section that describes the
underlying shared elements; third, a series of sections that describe the details of specific business
documents; last, a look at the complete cXML XML definitions.

Examples and discussions from actual implementations appear throughout to help clarify how
cXML can be used.

cXML/1.0 August 16, 1999

Ariba, Inc. 6

2 Protocol specification
cXML transactions take place in one of two models: Request-Response and One-Way. These two
models allow for simplicity in implementation from the client/requestor perspective because the
operations required are strictly described. Both models are required because there are situations
when one model cannot provide a good fit.

Additionally, Request-Response transactions are strongly bound to the HTTP transport
mechanism— that is, they can be performed only over an HTTP connection. One-Way messages
are not restricted to a transport; two will be discussed below— HTTP and URL-Form-Encoding.

Because the Request-Response model is simpler to explain and understand, we will examine it
first.

2.1 Request-Response
The following figure describes the protocol steps involved in a Request-Response interaction:

A B

Response

Request

One HTTP
POST/Response

B Performs
Request

Figure 1 Example of a Single Request-Response Transaction

The above figure shows a cXML transaction between A and B. The transaction contains the
following steps.

1. A initiates an HTTP/1.x connection with B on a predetermined URL that represents B’s
address.

2. A uses the HTTP connection to send the cXML message as a POST operation.

3. A waits for response to the message to return in the HTTP stream.

4. B has an HTTP/1.x-complaint server that dispatches the HTTP Request to the resource
specified by the URL used in Step 1. This can be any valid resource known to B’s HTTP
server; for example, a CGI program or an ASP page.

5. B’s resource identified in Step 4 reads the cXML message contents, maps the Request to
the appropriate handler for that request.

6. B’s handler for the cXML Request performs the work that the Request specifies and
formats a cXML message as a Response.

7. B sends the cXML Response to A through the HTTP connection established in Step 1.

cXML/1.0 August 16, 1999

Ariba, Inc. 7

8. A reads the cXML Response and returns it to the process that initiated the Request.

9. A closes the HTTP connection established in Step 1.

This process is then repeated for further Request/Response cycles. To simplify the work required
to accomplish the above steps, a cXML message is divided into two distinct parts:

• Header

• Request/Response data

The Header contains authentication information and addressing. The Request/Response bodies
contain a specific request, the information to be passed, and the data that is expected as the
response. Both of these elements are carried in a parent envelope element. The following example
shows the document structure (incomplete to make the structure more evident):
<cXML>
 <Header>
 Header specific information here…
 </Header>
 <Request>
 Request specific information here…
 </Request>
</cXML>

The above example is a case where the body of the message is a Request. The following is an
example of a Response:
<cXML>
 <Response>
 Response specific information here…
 </Response>
</cXML>

The Response structure does not contain a Header element. It is not needed because the Response
always travels in the same HTTP request that the Request traveled in.

The following sections discuss the various elements in more detail.

2.2 cXML Envelope
The envelope element is the root of the cXML message structure and it contains all the other
elements. The cXML element is present in each cXML transaction. The following example shows
a fully specified cXML element.
<cXML version="1.0" payloadID="1234567.4567.5678@test.ariba.com"
timestamp="1999-03-31T18:39:09-08:00">

cXML/1.0 August 16, 1999

Ariba, Inc. 8

A cXML element contains three attributes:

version Specifies the version of the cXML protocol.

payloadID A unique number with respect to space and time, used
for logging purposes to identify messages that might
have been lost or had problems.

The recommended implementation is:

datetime.process id.random number@hostname

timestamp The date and time the message was sent, in ISO 8601
format.

2.3 Header
The Header contains information that is more transport-oriented than application-
request/response-level-oriented. The same Header element is used regardless of which specific
Request or Response is contained in the body of the cXML message. The application needs the
requestor's identity, but does not need validation that the information provided for identity is
correct. The following example shows the Header element in full detail.
<Header>
 <From>
 <Credential domain=“AribaNetworkUserId”>
 <Identity>aribaadmin@cisco.com</Identity>
 </Credential>
 </From>
 <To>
 <Credential domain=“DUNS”>
 <Identity>012345678</Identity>
 </Credential>
 </To>
 <Sender>
 <Credential domain=“AribaNetworkUserId”>
 <Identity>aribaadmin@cisco.com</Identity>
 <SharedSecret>welcome</SharedSecret>
 </Credential>
 <UserAgent>Ariba ORMS 6.0</UserAgent>
 </Sender>
</Header>

The From and To elements are synonymous with From and To in SMTP email messages; they
are the logical source and destinations of the messages. Sender is the identity of A in Figure 1.
A is the entity opening the HTTP connection and sending the cXML document. Usually, Sender
and From are the same, with Sender containing the Credential element that authenticates
the party to perform the Request. This allows strong authentication without requiring a public-key

cXML/1.0 August 16, 1999

Ariba, Inc. 9

end-to-end digital certificate infrastructure. Only a user name and password needs to be issued by
B to allow A to perform Requests.

The Sender element is the only one that changes as the cXML message is routed through the
systems participating in delivering the message to its recipient.

The following sections discuss the elements in more detail.

2.3.1 From

This element contains a Credential element. It can optionally contain more than one
Credential element, allowing the requestor to identify themselves in multiple ways. This is
analogous to sending both SMTP and X.400 email addresses in an email message.

2.3.2 To

This element contains the destination of the cXML request. As in the From element case, more
than one Credential can be specified to help identify the target.

2.3.3 Sender

This element contains the Credential of the entity on the other end of the HTTP connection
performing a Request. It is a stronger authentication Credential than the ones contained in
the From or To elements, which is necessary because the receiver on the other end of the HTTP
connection must know who is asking it to perform work. See the Credential element for a
description of the various ways of authenticating.

2.3.3.1 Credential

This element contains identification and authentication values used in cXML messages. It contains
one attribute:

domain Specifies the domain of the Credential. This allows
multiple domains to co-exist in messages and allows
multiple authentication domains to be used.

For messages sent on Ariba Network, for instance, the
domain will be “AribaNetworkUserId” or “DUNS”.

The elements that this element contains include an Identity element and optionally a
SharedSecret or DigitalSignature element. The Identity element is used to state who
is the Credential representing, while the optional Authentication elements then allow the
Credential to assert that they are who they say they are.

The SharedSecret element would be used when the Sender has a username/password
combination that the Requester at the other end of the HTTP connection can understand. That is
the scenario used in the Header example above.

cXML/1.0 August 16, 1999

Ariba, Inc. 10

The DigitalSignature element could be used if the two parties agree on a common
certificate format and authority. The type attribute on a DigitalSignature element would
be used to coordinate this. Refer to the definitions in Transport.mod for more details.

2.4 Request
Requests are sent by clients to request operations. Only one Request element is allowed for
each cXML envelope element, which simplifies the server implementations, because no de-
multiplexing needs to occur when reading cXML messages. Though the Request element can
contain virtually any type of XML data, we will only look at the requests that are defined in
cXML. These elements will be discussed later in the Business Document definition sections.

deploymentMode Indicates whether the request is a test request or a
production request.

2.5 Response
Responses are sent by the server to inform the client of the results of operations. Because the
result of some Requests might not have any data, the Response element can optionally contain
nothing but a Status element. A Response element can contain any application-level data. In
the PunchOut scenarios looked at later, that means a PunchOutStartupResponse element.

2.5.1 Status

This element conveys the success or failure of a Request operation. It has the following attributes:

code The status code of the request. This follows the
HTTP status code model very closely, with 200
being request successful, etc.

text The text of the status code. This is here to aid
human readability in logs. These will be canonical
strings in English.

The attributes of the Status element indicate what happened to the request. The complete list
of defined status code is forthcoming. The data in-between the Status tags can be anything that
particular status code wants to deliver. For a 200/OK status code, there might be no data.
However, for a 500/ERROR status code, it is strongly recommended that the actual XML parse
error or application error be presented. This error allows better one-sided debugging and
interoperability testing, because people on both sides of the operation do not have to be involved.

cXML/1.0 August 16, 1999

Ariba, Inc. 11

2.6 One-Way (Asynchronous)
One-Way messages are for situations when an HTTP channel (or really, a synchronous request-
response type operation) is not appropriate. The following figure shows an example of how A and
B might communicate with Messages instead of the Request-Response transaction.

A B

Message

Figure 2 Diagram of a One-Way Message (Asynchronous)

In this case, a possible scenario would be:

1. A formats and encodes a cXML message in a transport that B understands.

2. A sends the message using the known transport. A does not (and cannot) actively wait for
a response to come back from B.

3. B receives the cXML message and decodes it out of the transport stream.

4. B processes the message.

It is important to realize that A and B do not have an explicit Request-Response cycle here.
Messages from other parties might arrive; other conversations could take place, etc. To fully
specify a One-Way transaction, the transport used for the message must also be documented. For
the cXML transactions that use the One-Way approach, the transport and encoding are specified.
The best example of a transaction that uses One-Way is the PunchOutOrder* set of transactions.

One-Way messages have a similar structure to the Request-Response model:
<cXML>
 <Header>
 Header specific information here…
 </Header>
 <Message>
 Message specific information here…
 </Message>
</cXML>

The Header element is treated exactly as it is in the Request-Response case. The cXML element
is also identical to the one described above. The easiest way to tell the different between a One-
Way message and a Request-Response message is the presence of a Message element. The
following section discusses the Message element in more detail.

2.6.1 Message

This element carries all the Body level information in a cXML message. It can contain an optional
Status element, identical to that found in a Response element— it would be used in Messages

cXML/1.0 August 16, 1999

Ariba, Inc. 12

that are logical responses to request Messages. The Message element itself has only one optional
attribute:

 InReplyTo
(optional)

Used to specify to which Message this Message
responds. The contents of the inReplyTo attribute
would be the payloadID of a Message that was
received earlier. This would be used to construct a
Request-Response like conversation over many
Messages.

2.6.2 Transport Options

There are two well-known options for transporting One-Way Messages: HTTP and URL-Form-
Encoding. It is important to note that these are just two of the well-defined transports today,
more could become supported in the future, with SMTP being a prime candidate.

2.6.2.1 HTTP

This transport is similar to the first part of the Request-Response cycle where the originator
initiates an HTTP connection to the receiver. However, instead of waiting for a Response to come
back in the HTTP channel, the originator simple transmits the cXML Message as a POST and
closes the connection.

HTTP is the preferred channel for One-Way Message transmission if it is available.

2.6.2.2 URL-Form-Encoding

This transport is best understood by examining how the PunchOutOrderMessage transaction is
performed. URL-Form-Encoding is used to enable integration between remote Web site and the
originating system. It also serves as a way to bypass the requirements of having a listening server
on the originating system that is directly accessible through the Internet.

The PunchOutOrderMessage cXML message is not directly sent to the originating system by the
remote Web site, but is encoded as a hidden HTML Form field and then posted to the URL
specified in the BrowserFormPost element of the PunchOutSetupRequest. This permits the
remote Web site to display a check out Web page. When the user clicks on the check out button,
the data is presented to the originating system as an HTML Form Submit. The following diagram
shows what happens:

cXML/1.0 August 16, 1999

Ariba, Inc. 13

Remote
Website

Originating
System

Web
Browser

Internet

HTML page with
Form-encoded
cXML message

User clicks Submit
button, Form is
send to URL
specified by
Originating

System
Form is decoded,
cXML message
extracted and

passed to
Originating System

as a new cXML
Request

1

2

3

The exact packing and unpacking semantics are desscribed below.

2.6.2.2.1 Form Packing

The cXML PunchOutOrderMessage document is URL-Encoded (per the HTTP specification) and
assigned to a hidden field on the Form named cXML-urlencoded. The HTML Form element
is assigned a METHOD of POST and an ACTION consisting of the URL passed in the
BrowserFormPost element of the PunchOutSetupRequest. This might look like the following
in an HTML page:
<FORM METHOD=POST
 ACTION=” http://ariba.cisco.com:1616/punchoutexit”>
<INPUT TYPE=HIDDEN NAME=”cXML-urlencoded” VALUE=”URL-Encoded
PunchOutOrderMessage document”>
<INPUT TYPE=SUBMIT VALUE=”Proceed”>
</FORM>

There would of course be additional HTML tags on the page containing the above fragment,
which might be describing the contents of the shopping basket in detail, etc.

cXML/1.0 August 16, 1999

Ariba, Inc. 14

2.6.2.2.2 Form Unpacking and Processing

The originating system, which had provided the appropriate URL previously, would receive an
HTML Form POST containing the Form data as described above. The Form POST processor
would look for the cXML-urlencoded variable, extract the URL-Encoded cXML message,
URL-Decode it and then process it as if it had been received through a normal HTTP
Request/Response cycle. The primary difference in this case is that there is no Response that can
be generated, because there is no HTTP connection on which to send it.

cXML/1.0 August 16, 1999

Ariba, Inc. 15

3 Basic and Common Elements
The following entities and elements are used throughout the cXML specification. Most of the
definitions here are basic vocabulary with which the higher-order business documents are
described. The common type entities and the common elements representing low-level objects are
defined here.

3.1 Type Entities
These definitions are from the XML-Data note submission to the W3C (refer to Common.mod
for the list and the URLs for the source XML-data definitions). A few higher-level type entities
that are also defined here are not from XML-Data.

3.1.1 isoLangCode

This entity is an ISO Language Code from the ISO 639 standard.

3.1.2 unitOfMeasure

This entity is a unit of measure definition from the UN/CEFACT (Recommendation 20) standard.

3.1.3 URL

This entity is a URL as defined by the HTTP/1.1 standard.

3.2 Base elements
Elements used throughout the specification, which range from generic ones like Name and
Extrinsic, to specific ones like Money.

Each is described with a detailed header comment in Base.mod. Refer to it for details.

cXML/1.0 August 16, 1999

Ariba, Inc. 16

4 Order Definitions
The cXML ordering documents are OrderRequest and OrderResponse. OrderRequest is
analogous to a Purchase Order (PO). OrderResponse is the acknowledgement that the supplier
received your PO. It is not a commitment to execute the PO, but confirmation that it was
correctly received.

4.1 OrderRequest
An OrderRequest element looks like the following:
<OrderRequest>
 <OrderRequestHeader … >
 …
 </OrderRequestHeader>
 <ItemOut … >
 …
 </ItemOut>
 <ItemOut … >
 …
 </ItemOut>
</OrderRequest>

The details of the OrderRequestHeader and the ItemOut elements have been hidden to
show the structure of an OrderRequest.

4.1.1 OrderRequestHeader

The following example shows an OrderRequestHeader in full detail:
<OrderRequestHeader orderID="DO1234" orderDate="1999-03-12"
requestedDeliveryDate="1999-03-24" type=”new”>
 <Total>
 <Money currency="USD">12.34</Money>
 </Total>
 <ShipTo>
 <Address>
 <Name xml:lang="en">Cisco Corporation</Name>
 <PostalAddress name="foo">
 <DeliverTo>Joe Smith</DeliverTo>
 <DeliverTo>Mailstop M-543</DeliverTo>
 <Street>123 Anystreet</Street>
 <City>Sunnyvale</City>
 <State>CA</State>
 <PostalCode>90489</PostalCode>
 <Country>US</Country>
 </PostalAddress>
 </Address>
 </ShipTo>

cXML/1.0 August 16, 1999

Ariba, Inc. 17

 <BillTo>
 <Address>
 <Name xml:lang="en">Cisco Corporation</Name>
 <PostalAddress name="foo">
 <Street>123 Anystreet</Street>
 <City>Sunnyvale</City>
 <State>CA</State>
 <PostalCode>90489</PostalCode>
 <Country>US</Country>
 </PostalAddress>
 </Address>
 </BillTo>
 <Shipping>
 <Money currency="USD">12.34</Money>
 <Description xml:lang="en-us">FedEx 2-day</Description>
 </Shipping>
 <Tax>
 <Money currency="USD">12.34</Money>
 <Description xml:lang="en">CA State Tax</Description>
 </Tax>
 <Payment>
 <PCard number="1234567890123456" expiration="1999-03-
12"/>
 </Payment>
 <Comments>Anything well formed in XML can go here.</Comments>
</OrderRequestHeader>

This element has the following attributes:

OrderID The identifier for this order. What the PO
Number is today.

OrderDate The date and time this order was placed, in
ISO 8601 format.

RequestedDeliveryDate The date and time this order is requested for
delivery, in ISO 8601 format.

Type Type of the request – new or cancel.

4.1.1.1 Total

This element contains the total amount of the order. It is a container for the Money element
defined in Base.mod.

cXML/1.0 August 16, 1999

Ariba, Inc. 18

4.1.1.2 ShipTo/BillTo

These elements contain the addresses of the Ship To and Bill To entities on the
OrderRequest. These are Address elements as specified in the Base.mod.

4.1.1.3 Shipping

This element describes how to ship the items in the request and the cost of doing so. If the
Shipping element is present in the OrderRequestHeader, it must not appear on individual
ItemOut elements. If it is not present in the OrderRequestHeader, it must appear on the
ItemOuts.

4.1.1.4 Tax

This element contains the tax associated with the order. This element is present if the buying
organization computes tax.

4.1.1.5 Payment

This element describes the payment instrument being used to pay for the items being requested. In
the above example, the Payment element contains a PCard element, which encodes a standard
purchasing card into the cXML document. In the future, other payment instruments will be
defined and supported.

4.1.2 ItemOut

The following example shows a fully valid minimal ItemOut element.
<ItemOut quantity="1" requestedDeliveryDate="1999-03-12">
 <ItemID>
 <SupplierPartID>5555</SupplierPartID>
 </ItemID>
</ItemOut>

The attributes on an ItemOut are the following:

quantity The number of items desired.

requestedDeliveryDate The time and date this item is requested for
delivery, which allows item-level delivery
dates in the OrderRequest. It must be in
ISO 8601 format.

The following example shows a more complicated ItemOut.
<ItemOut quantity="2" requestedDeliveryDate="1999-03-12">
 <ItemID>
 <SupplierPartID>1233244</SupplierPartID>
 </ItemID>

cXML/1.0 August 16, 1999

Ariba, Inc. 19

 <ItemDetail>
 <UnitPrice>
 <Money currency="USD">1.34</Money>
 </UnitPrice>
 <Description xml:lang="en">hello</Description>
 <UnitOfMeasure>EA</UnitOfMeasure>
 <Classification domain="SPSC">12345</Classification>
 <ManufacturerPartID>234</ManufacturerPartID>
 <ManufacturerName>foobar</ManufacturerName>
 <ManufacturerURL>www.bar.com</ManufacturerURL>
 <SupplierURL>www.foo.com</SupplierURL>
 </ItemDetail>
 <ShipTo>
 <Address>
 <Name xml:lang="en">Cisco Corporation</Name>
 <PostalAddress name="foo">
 <Street>123 Anystreet</Street>
 <City>Sunnyvale</City>
 <State>CA</State>
 <PostalCode>90489</PostalCode>
 <Country>US</Country>
 </PostalAddress>
 </Address>
 </ShipTo>
 <Shipping>
 <Money currency="USD">1.34</Money>
 <Description xml:lang="en-us">FedEx 2-day</Description>
 </Shipping>
 <Tax>
 <Money currency="USD">1.34</Money>
 <Description xml:lang="en">foo</Description>
 </Tax>
 <Distribution>
 <Accounting name="DistributionCharge">
 <Segment type="G/L Account" id="23456"
description="Entertainment"/>
 <Segment type="Cost Center" id="2323"
description="Western Region Sales"/>
 </Accounting>
 <Charge>
 <Money currency="USD">.34</Money>
 </Charge>
 </Distribution>
 <Distribution>
 <Accounting name="DistributionCharge">
 <Segment type="G/L Account" id="456"
description="Travel"/>
 <Segment type="Cost Center" id="23"
description="Europe Implementation"/>
 </Accounting>

cXML/1.0 August 16, 1999

Ariba, Inc. 20

 <Charge>
 <Money currency="USD">1</Money>
 </Charge>
 </Distribution>
 <Comments>Anything well formed in XML can go here.</Comments>
</ItemOut>

The ItemDetail element allows additional data to be sent to the supplier instead of just the
unique identifier for the item represented by the ItemID.

The ShipTo, Shipping and Tax elements are identical to the ones that can be in the
OrderRequestHeader. This allows per item shipping, shipping type and associated cost, and
associated tax to be represented.

4.1.2.1 Distribution

A distribution represents a way to charge the cost of a given item in multiple ways. It models the
notion of multiple entities buying the same set of items, but wanting to accurately represent who
pays for what. The most likely use of the Distribution element would be for the supplier to
return it on an Invoice to facilitate the buyer’s reconciliation process.

4.1.2.1.1 Accounting

This element groups Segments to identify who will be charged. It has the following attribute:

 name The name for this accounting combination.

Segments have the following attributes:

type An identifying name for this Segment with
respect to the others in the Accounting
element.

id The unique identifier within this Segment type.
This might be the actual account code if the
type were “Cost Center”.

description A user level description of the id. This might
be “North American Sales” in the “Cost
Center” example above.

4.1.2.1.2 Charge

The amount to be charged to the entity represented by the Accounting element.

cXML/1.0 August 16, 1999

Ariba, Inc. 21

4.2 OrderResponse
This is the Response part of the synchronous Request-Response transaction. The following
example shows an OrderResponse:
<cXML version="1.0" payloadID="9949494" timestamp="1999-03-
12T18:39:09-08:00">
 <Response>
 <Status code="200" text="OK"/>
 </Response>
</cXML>

As shown above, an OrderResponse is straightforward. In this case, there is no actual element
named OrderResponse, because the only data that needs to be sent back to the Requestor is the
Status part of the Response.

The OrderResponse allows the Requestor to know their OrderRequest was successfully parsed
and acted on by the remote part of HTTP connection. It does not communicate order level
acknowledgement such as which items can be shipped, or which need to be backordered.

cXML/1.0 August 16, 1999

Ariba, Inc. 22

5 PunchOut Definitions
The PunchOut messages definitions are the Request/Response messages that are carried inside the
Request and Response elements. All of the following messages must be implemented to
support the PunchOut specification for cXML.

5.1 PunchOutSetup*
These elements are the Request/Response pair used to set up a PunchOut request to a remote
system. They identify the originating system, send setup information, and receive a response
indicating where to go to initiate an HTML browsing session on the remote Web site.

5.1.1 PunchOutSetupRequest

A PunchOutSetupRequest element is carried within the Request element. The following example
shows a PunchOutSetupRequest.
<PunchOutSetupRequest operation="create">
 <BuyerCookie>34234234ADFSDF234234</BuyerCookie>
 <Extrinsic name="department">Marketing</Extrinsic>
 <BrowserFormPost>
 <URL>http://ariba.cisco.com:1616/punchoutexit</URL>
 </BrowserFormPost>
</PunchOutSetupRequest>

The attribute on the PunchOutSetupRequest element is:

operation Specifies the type of PunchOutSetupRequest:
“create”, “inspect”, or “edit”.

This element also contains the following elements: BuyerCookie, Extrinsic, and
BrowserFormPost.

5.1.1.1 BuyerCookie

This element transmits information that is opaque to the remote Web site, but must be returned to
the originator for all subsequent PunchOut operations. This element is used to allow the
originating system to match multiple outstanding PunchOut requests.

5.1.1.2 BrowserFormPost

This element is the destination for the data in the PunchOutOrderMessage. It contains a URL
element whose use will be further explained in the PunchOutOrderMessage definition. If the
URL-Form-Encoded method is not being used, this element does not have to be included.

cXML/1.0 August 16, 1999

Ariba, Inc. 23

5.1.1.3 Extrinsic

This element is optional and is used for any additional data that the requestor wants to pass to the
external Web site. This example passes the department of the user initiating the PunchOut
operation. It is important to realize that the cXML specification says nothing about this Extrinsic
element— it is something that each requestor and remote Web site would need to agree on and
implement.

5.1.2 PunchOutSetupResponse

After the remote Web site has received a PunchOutSetupRequest, it needs to respond with a
PunchOutSetupResponse, as shown below:
<PunchOutSetupResponse>
 <StartPage>
 <URL>
 http://premier.dell.com/store?23423SDFSDF23
 </URL>
 </StartPage>
</PunchOutSetupResponse>

5.1.2.1 StartPage

This element contains a URL element that specifies the URL to pass to the browser to initiate the
PunchOut browsing session requested in the PunchOutSetupRequest. This URL must contain
enough state information to bind to a session context on the remote Web site, such as the
requestor identity and the appropriate BuyerCookie element.

At this point, the user who initiated the PunchOutSetupRequest browses the external Web site,
and selects items to be transferred back to the originating system through a
PunchOutOrderMessage.

5.2 PunchOutOrderMessage
This element sends the contents of the remote shopping basked to the originator of a
PunchOutSetupMessage. It can contain much more data than the other messages because it needs
to be able to fully express the contents of any conceivable shopping basket on the external Web
site. This message does not strictly follow the Request/Response paradigm; how it is used will be
explained in detail.

A PunchOutOrderMessage is generated when the user browsing the remote Web site is ready to
check out or transfer the information obtained there to their originating system. The data present
in the remote shopping basket is then transferred; for example:
<PunchOutOrderMessage>
 <BuyerCookie>34234234ADFSDF234234</BuyerCookie>
 <PunchOutOrderMessageHeader operationAllowed="none">
 <Total>
 <Money currency="USD">100.23</Money>

cXML/1.0 August 16, 1999

Ariba, Inc. 24

 </Total>
 </PunchOutOrderMessageHeader>
 <ItemIn quantity="1">
 <ItemID>
 <SupplierPartID>1234</SupplierPartID>
 <SupplierPartAuxiliaryID>
 additional data about this item
 </SupplierPartAuxiliaryID>
 </ItemID>
 <ItemDetail>
 <UnitPrice>
 <Money currency="USD">10.23</Money>
 </UnitPrice>
 <Description xml:lang="en">
 Learn ASP in a Week!
 </Description>
 <UnitOfMeasure>EA</UnitOfMeasure>
 <Classification domain="SPSC">12345</Classification>
</ItemDetail>
 </ItemIn>
</PunchOutOrderMessage>

There are many elements listed above. The following sections discuss them in detail.

5.2.1 BuyerCookie

This element is the same element that was passed in the original PunchOutSetupRequest. It must
be returned here to allow the originating system to match the PunchOutOrderMessage with an
earlier PunchOutSetupRequest.

5.2.2 PunchOutOrderMessageHeader

This element contains information about the entire shopping basket contents being transferred.
The only required element is Total, which is the number of items being added to the requisition.
Additional elements that are allowed are Shipping and Tax, which are the amount and
description of any shipping or tax charges computed on the remote Web site. ShipTo is also
optional, and it specifies the ShipTo addressing information the user selected on the remote site.
All monetary amounts are in a special Money element that always specifies currency in a
standardized format. See the Base.mod file for the exact definition.

The only attribute allowed is:

operationAllowed Specifies the type of PunchOutSetupRequest
operations that are allowed: “create”, “inspect”, and
“edit”.

Only “create” is examined in this document.

cXML/1.0 August 16, 1999

Ariba, Inc. 25

5.2.3 ItemIn

This element adds an item from a shopping basket to a requisition on the originating system. It
can contain a variety of elements, only two of which are required: ItemID and ItemDetail. It
defines the following attribute:

quantity Number of item selected by the user on the remote
Web site.

The optional elements are ShipTo, Shipping, and Tax, which are the same elements as those
specified in PunchOutOrderMessage, above.

5.2.3.1 ItemID

This element uniquely identifies the item in a way that the remote Web site will understand. It is
the only element that is required to be returned to the remote Web site to re-identity the item
being transferred.

ItemID contains two elements: SupplierPartID and SupplierPartAuxiliaryID.
Only SupplierPartID is required. SupplierPartAuxiliaryID helps the remote Web
site transport complex configuration or bill-of-goods information to re-identify the item when it is
presented to the remote Web site in the future.

5.2.3.2 ItemDetail

This element contains descriptive information about the item that the originating system can
present to the user. The contents of an ItemDetail element can be quite complex, but the minimum
requirements are simple: UnitPrice, Description, UnitOfMeasure, and
Classification. See Item.mod for details about the required and optional elements.

cXML/1.0 August 16, 1999

Ariba, Inc. 26

6 Catalog Definitions
The cXML Catalog definitions consist of three main elements: Supplier, Index, and
Contract. All three elements describe data intended for persistent or cached use within a
buyer’s system.

The Supplier element describes data about the supplier the buyer might need to know
(address, contact, and ordering information). The Index element describes data about the
supplier’s inventory of goods and services (such as description, part numbers, and classification
codes). And, the Contract element describes data about flexible aspects of the inventory
negotiated between the buyer and supplier, such as price. Note that the Index uses several sub-
elements to describe aspects of line items in the supplier’s inventory. The supplier can send either
price information for caching within the buyers system or PunchOut information to enable the
buyer to punch-out to the supplier’s web-site for pricing and other information.

6.1 Supplier
The Supplier element encapsulates a named supplier of goods and services. It must have a
Name element and at least one SupplierID that specifies how this supplier is known. It
additionally describes optional address and ordering information for the supplier:

Name

xml:lang

SupplierID

domain
value

Address

code

Supplier

corporateURL
storeFrontURL

+
*

Contact

SupplierLocation

OrderMethods

OrderMethodOrderTarget

Phone|Email|Fax|URL

OrderProtocol

+ ?

?

Its attributes are described in the following table.

cXML/1.0 August 16, 1999

Ariba, Inc. 27

corporateURL URL for supplier's Web site.

storeFrontURL URL for Web site for shopping or browsing.

The following example shows Supplier (with details omitted for clarity):
<Supplier>
 <SupplierID domain="InternalSupplierID">29</SupplierID>
 <SupplierLocation>
 <Address>
 <Name xml:lang="en-US">Main Office</Name>
 <PostalAddress>
 …
 </PostalAddress>
 <Email>bobw@globalcorp.com</Email>
 <Phone name="Office">
 …
 </Phone>
 <Fax name="Order">
 …
 </Fax>
 <URL>http://www.bigcorp.com/Support.htm</URL>
 </Address>
 <OrderMethods>
 <OrderMethod>
 <OrderTarget>
 <URL>http://www.bigcorp.com/cxmlorders</URL>
 </OrderTarget>
 </OrderMethod>
 <Contact>
 <Name xml:lang="en-US">Mr. Smart E. Pants</Name>
 <Email>sepants@bigcorp.com</Email>
 <Phone name="Office">

 …
 </Phone>
 </Contact>
 </OrderMethods>
 </SupplierLocation>
</Supplier>

6.1.1 SupplierLocation

Some suppliers might have more than one location that conducts business, and a SupplierLocation
element can be used for each of the locations. This element also encapsulates how that location
does business, or the ways that it can accept orders. A SupplierLocation element contains
an Address and a set of OrderMethods.

cXML/1.0 August 16, 1999

Ariba, Inc. 28

6.1.1.1 OrderMethods and OrderMethod

The OrderMethods element is a grouping of one or more OrderMethod elements for the
given SupplierLocation element. The ordering of the OrderMethods in the list is
significant – the first element is considered the preferred ordering method and so on in decreasing
order of preference.

The OrderMethod encapsulates ordering information in the form of an order target (such as
phone, fax, or URL) and an optional protocol to further clarify the ordering expectations at the
given target; for example, "cxml" for a URL target.

6.2 Index
This element is the root element used for updating the inventory of goods and services in the
buyers system.

An Index element is associated with a single supplier. The Index element allows for a list of one
or more (at least one is required) supplier Ids, where each ID is considered a synonym for the
same supplier.

The Index contains one or more IndexItem elements as well as an optional set of SearchGroup
elements describing parametric searches for the index. The IndexItem element contains elements
indicating what to add or delete from the buyer’s cached representation of the supplier’s
inventory. The general outline of an Index element follows:
<Index>
 <SupplierID> … </SupplierID>
 <IndexItem>
 <IndexItemAdd>
 <IndexItemDetail>
 …
 </IndexItemDetail>
 </IndexItemAdd>
 …
 <IndexItemDelete>
 …
 </IndexItemDelete>
 …
 <IndexItemPunchOut>
 …
 </IndexItemPunchOut>
 </IndexItem>
</Index>

6.2.1 IndexItem, IndexItemAdd, IndexItemDelete, and IndexItemPunchOut

The IndexItem element is a container for the list of items in an index. There are three types of
child item elements, one or more of which can be specified within an IndexItem—

cXML/1.0 August 16, 1999

Ariba, Inc. 29

IndexItemAdd, IndexItemDelete, and IndexItemPunchOut. These children contain
specific detail elements depending on what data is required for add, delete, or punchout:

• The IndexItemAdd element inserts a new item or updates an existing item in the index. It
contains exactly one ItemID element, one ItemDetail element, and one
IndexItemDetail element.

• The IndexItemDelete element removes an item from the index, and it contains a single
ItemID element identifying the item.

• The IndexItemPunchout element identifies an item that can be used to dynamically
connect an index item to the supplier's resource for that item. It consists of a
PunchOutDetail element and an ItemID element. It is similar to an IndexItemAdd
element except that it does not require price information— the intent is that the buyer gets that
information real time through the supplier’s Web site.

6.2.1.1 ItemID

The ItemID element enables suppliers to uniquely identify the items they sell. It is composed of
a SupplierPartID element and an optional SupplierPartAuxiliaryID element.

6.2.1.1.1 SupplierPartAuxiliaryID

If SupplierPartID does not provide a unique key to identify the item, then the supplier
should use the SupplierPartAuxiliaryID to specify an “auxiliary” key that identifies the
part uniquely when combined with the SupplierID and SupplierPartID. As an example,
a supplier might use the same SupplierPartID for an item but have a different price for units
of "EA" versus "BOX". In this case, a reasonable SupplierPartAuxiliaryID for the two
items might be “EA” and “BOX.”

SupplierPartAuxiliaryID could also be an opaque way for the supplier to refer to
complex configuration or part data. It could contain all the data necessary for the supplier to
reconstruct what the item in question is in their computer system (a basket or cookie of data that
makes sense only to the supplier). This is the use referred to above in the discussion of PunchOut.

6.2.1.2 ItemDetail

ItemDetail contains detailed information about an item, or all the data that a user might want
to see about an item beyond the essentials that are represented in the ItemID. It must contain a
UnitPrice, a UnitOfMeasure, a Description, and a Classification, and it can
optionally contain a ManufacturerPartID, a ManufacturerName, a
ManufacturerURL, a SupplierURL, and any number of Extrinsic elements.

6.2.1.3 IndexItemDetail

The IndexItemDetail element contains various index-specific elements that help define
additional aspects of an added index item, such as LeadTime, ExpirationDate,
EffectiveDate, SearchGroupData, or TerritoryAvailable.

cXML/1.0 August 16, 1999

Ariba, Inc. 30

6.3 Contract
A contract element represents a contract between a supplier and buyer over goods and services
described in the supplier’s index. It allows the supplier to “overlay” item attributes (such as price)
in the index with values negotiated with the buyer. It further allows suppliers and buyers to
segment these overlays based on an agreed-upon “segment key”, meaningful within a buyer’s
system, such as the name of a plant or a cost center.

The attributes that describe the effective and expiration dates for the contract are:

effectiveDate Effective date of the contract.

expirationDate Expiration date of the contract.

The contract element contains one or more ItemSegment elements. An example follows:
<Contract>
 <SupplierID domain="InternalSupplierID">29</SupplierID>
 <ItemSegment segmentKey=Plant12>
 <ContractItem>
 <ItemID>
 <SupplierPartID>pn12345</SupplierPartID>
 </ItemID>
 <UnitPrice>
 <Money currency=USD>40.00</Money>
 </UnitPrice>
 <ContractItem>
 …
 </ItemSegment>
 </Contract>

6.3.1 ItemSegment

The ItemSegment element is a container for a list of ContractItem elements for a given
“segment”, where a segment represents an arbitrary partitioning of contract items based on a
segment key agreed upon between supplier and buyer.

segmentKey Agreed-upon string used to segment custom prices.

6.3.2 ContractItem

A contract item element is a particular item overlay for an index item. It contains an ItemID that
uniquely identifies the index item within the buyer’s system to overlay. It can contain any number
of Extrinsic elements containing the overlaid value for the named index item attribute.

cXML/1.0 August 16, 1999

Ariba, Inc. 31

7 Subscription Management Definitions
An intermediary, such as Ariba Network, can manage the suppliers and supplier catalogs that a
buyer’s system uses. Such an intermediary can provide a direct link between the buyer’s system
and the suppliers and/or their systems. This section contains element definitions for managing
supplier data and catalog contents. These definitions build on many of the previous definitions for
cXML request/responses, one-way messages and catalog definitions.

7.1 Supplier Data
The definitions for supplier data management consist mainly of the elements SupplierListRequest,
SupplierListResponse, SupplierDataRequest, SupplierDataResponse, and
SupplierChangeMessage. These elements are described below with examples where the
intermediary is Ariba Network.

7.1.1 SupplierListRequest

SupplierListRequest gets a list of the suppliers with whom the buyer has enabled to have an active
relationship.
<Request>
 <SupplierListRequest/>
</Request>

7.1.2 SupplierListResponse

SupplierListResponse contains a list of the buyer's currently enabled suppliers.
<Response>
 <Status code="200" text="OK"/>
 <SupplierListResponse>
 <Supplier corporateURL="http://www.dummy.com"
storeFrontURL="http://www.buydummy.com">
 <Name xml:lang="en-US">A Dummy Company </Name>
 <Comments xml:lang="en-US">this is a cool company</Comments>
 <SupplierID domain="DUNS">123456</SupplierID>
 </Supplier>
 <Supplier corporateURL="http://www.dummy2.com"
storeFrontURL="http://www.buydummy2.com">
 <Name xml:lang="en-US">A Dummy Company - 2 </Name>
 <Comments xml:lang="en-US">this is a cool company</Comments>
 <SupplierID domain="DUNS">123456789</SupplierID>
 </Supplier>
 </SupplierListResponse>
</Response>

cXML/1.0 August 16, 1999

Ariba, Inc. 32

7.1.3 SupplierDataRequest

SupplierDataRequest requests data about a supplier.
<Request>
 <SupplierDataRequest>
 <SupplierID domain="DUNS">123456789</SupplierID>
 </SupplierDataRequest>
</Request>

7.1.4 SupplierDataResponse

SupplierDataResponse contains data about a supplier.
<Response>
 <Status code="200" text="OK"/>
 <SupplierDataResponse>
 <Supplier corporateURL="http://www.dummy.com"
storeFrontURL="http://www.buydummy.com">
 <Name xml:lang="en-US">A Dummy Company </Name>
 <Comments xml:lang="en-US">this is a cool company</Comments>
 <SupplierID domain="DUNS">123456</SupplierID>
 <SupplierLocation>
 <Address>
 <Name xml:lang="en-US">Main Office</Name>
 <PostalAddress>
 <DeliverTo>Bob A. Worker</DeliverTo>
 <Street>123 Front Street</Street>
 <City>Toosunny</City>
 <State>CA</State>
 <PostalCode>95000</PostalCode>
 <Country>US</Country>
 </PostalAddress>
 <Email>bobw@dummy.com</Email>
 <Phone name="Office">
 <TelephoneNumber>
 <CountryCode isoLangCode="US">011</CountryCode>
 <AreaOrCityCode>800</AreaOrCityCode>
 <Number>555-1212</Number>
 </TelephoneNumber>
 </Phone>
 <Fax name="Order">
 <TelephoneNumber>
 <CountryCode isoLangCode="US">011</CountryCode>
 <AreaOrCityCode>408</AreaOrCityCode>
 <Number>555-1234</Number>
 </TelephoneNumber>
 </Fax>
 <URL>http://www.dummy.com/Support.htm</URL>
 </Address>
 <OrderMethods>
 <OrderMethod>
 <OrderTarget>
 <URL>http://www.dummy.com/cxmlorders</URL>
 </OrderTarget>
 <OrderProtocol>cXML</OrderProtocol>
 </OrderMethod>
 </OrderMethods>

cXML/1.0 August 16, 1999

Ariba, Inc. 33

 </SupplierLocation>
 </Supplier>
 </SupplierDataResponse>
</Response>

7.1.5 SupplierChangeMessage

This element contains a message used to notify of changes in supplier data.
<Message>
 <SupplierChangeMessage type="new">
 <Supplier corporateURL="http://www.dummy.com"
storeFrontURL="http://www.buydummy.com">
 <Name xml:lang="en-US">A Dummy Company </Name>
 <Comments xml:lang="en-US">this is a cool company</Comments>
 <SupplierID domain="DUNS">123456</SupplierID>
 <SupplierLocation>
 <Address>
 <Name xml:lang="en-US">Main Office</Name>
 <PostalAddress>
 <DeliverTo>Bob A. Worker</DeliverTo>
 <Street>123 Front Street</Street>
 <City>Toosunny</City>
 <State>CA</State>
 <PostalCode>95000</PostalCode>
 <Country>US</Country>
 </PostalAddress>
 <Email>bobw@dummy.com</Email>
 <Phone name="Office">
 <TelephoneNumber>
 <CountryCode isoLangCode="US">011</CountryCode>
 <AreaOrCityCode>800</AreaOrCityCode>
 <Number>555-1212</Number>
 </TelephoneNumber>
 </Phone>
 <Fax name="Order">
 <TelephoneNumber>
 <CountryCode isoLangCode="US">011</CountryCode>
 <AreaOrCityCode>408</AreaOrCityCode>
 <Number>555-1234</Number>
 </TelephoneNumber>
 </Fax>
 <URL>http://www.dummy.com/Support.htm</URL>
 </Address>
 <OrderMethods>
 <OrderMethod>
 <OrderTarget>
 <URL>http://www.dummy.com/cxmlorders</URL>
 </OrderTarget>
 <OrderProtocol>cXML</OrderProtocol>
 </OrderMethod>
 </OrderMethods>
 </SupplierLocation>
 </Supplier>
 </SupplierChangeMessage>
</Message>

cXML/1.0 August 16, 1999

Ariba, Inc. 34

7.2 Catalog Subscriptions
The definitions for Catalog-subscription management consist mainly of the elements Subscription,
SubscriptionListRequest, SubscriptionListResponse, SubscriptionContentRequest,
SubscriptionContentResponse, and SubscriptionChangeMessage. These are described below with
examples where the intermediary is Ariba Network.

7.2.1 Subscription

This element captures meta-data about a single catalog subscription. Its sub-elements include:

• InternalID – a unique ID internal to the intermediary,

• Name – the name of the subscription,

• ChangeTime – the time when anything about the subscription last changed,

• SupplierID – the ID of the supplier who is supplying the catalog,

• Format – the format of the catalog, and

• Description – a description of the catalog.

<Subscription>
 <InternalID>1234</InternalID>
 <Name xml:lang="en-US">Q2 Prices</Name>
 <Changetime>1999-03-12T18:39:09-08:00</Changetime>
 <SupplierID domain="DUNS">123456789</SupplierID>
 <Format version="2.1">CIF</Format>
 <Description xml:lang="en-US">The best prices for software</Description>
</Subscription>

7.2.2 SubscriptionListRequest

This element requests the current list of catalog subscriptions created at an intermediary for a
buyer.
<Request>
 <SubscriptionListRequest/>
</Request>

7.2.3 SubscriptionListResponse

This element contains the current set of subscriptions for the buyer.
<Response>
 <Status code="200" text="OK"/>
 <SubscriptionListResponse>
 <Subscription>
 <InternalID>1234</InternalID>
 <Name xml:lang="en-US">Q2 Prices</Name>
 <Changetime>1999-03-12T18:39:09-08:00</Changetime>
 <SupplierID domain="DUNS">123456789</SupplierID>

cXML/1.0 August 16, 1999

Ariba, Inc. 35

 <Format version="2.1">CIF</Format>
 <Description xml:lang="en-US">The best prices for
software</Description>
 </Subscription>
 <Subscription>
 <InternalID>1235</InternalID>
 <Name xml:lang="en-US">Q2 Software Prices</Name>
 <Changetime>1999-03-12T18:15:00-08:00</Changetime>
 <SupplierID domain="DUNS">555555555</SupplierID>
 <Format version="2.1">CIF</Format>
 <Description xml:lang="en-US">The best prices for
software</Description>
 </Subscription>
 </SubscriptionListResponse>
</Response>

7.2.4 SubscriptionContentRequest

This element requests the current contents of a catalog subscription. The request includes the
InternalID and SupplierID for the catalog.
<Request>
 <SubscriptionContentRequest>
 <InternalID>1234</InternalID>
 <SupplierID domain="DUNS">123456789</SupplierID>
 </SubscriptionContentRequest>
</Request>

7.2.5 SubscriptionContentResponse

This element contains the contents of catalog in the available formats. The catalog format can be
either CIF or cXML. If it is CIF, it is encoded using base64 and included as the content of a
CIFContent element. If it is cXML, the Index and Contract elements are directly included.
<Response>
 <Status code="200" text="OK"/>
 <SubscriptionContentResponse>
 <Subscription>
 <InternalID>1234</InternalID>
 <Name xml:lang="en-US">Q2 Prices</Name>
 <Changetime>1999-03-12T18:39:09-08:00</Changetime>
 <SupplierID domain="DUNS">123456789</SupplierID>
 <Format version="3.0">CIF</Format>
 <Description xml:lang="en-US">The best prices for
software</Description>
 </Subscription>
 <SubscriptionContent filename="foobar.cif">
 <CIFContent>
 <!-- base64 encoded data -->
 ABCDBBDBDBDBDB
 </CIFContent>
 </SubscriptionContent>
 </SubscriptionContentResponse>
 </Response>

cXML/1.0 August 16, 1999

Ariba, Inc. 36

7.2.6 SubscriptionChangeMessage

This element signals the buyer’s system that a catalog it has subscribed to has changed.
<Message>
 <SubscriptionChangeMessage type="new">
 <Subscription>
 <InternalID>1234</InternalID>
 <Name xml:lang="en-US">Q2 Prices</Name>
 <Changetime>1999-03-12T18:39:09-08:00</Changetime>
 <SupplierID domain="DUNS">123456789</SupplierID>
 <Format version="2.1">CIF</Format>
 </Subscription>
 </SubscriptionChangeMessage>
</Message>

It has the following attribute:

Type The type of the change: "new", "delete", or
"update".

cXML/1.0 August 16, 1999

Ariba, Inc. 37

8 Message Retrieval Definitions
Buyer systems are sometimes designed so they do not have an HTTP entry point residing outside
the firewall for receiving cXML messages. The cXML specifications allow for this limitation; for
example, PunchOut definitions consider this.

This section introduces definitions that allow the source system to queue messages when the
target is unable to directly accept an HTTP post and let the target pull the messages at its
convenience.

8.1 GetPendingRequest
This element pulls a set of messages waiting for the requester. The MessageType element and the
lastReceivedTimestamp and maxMessages attributes can be used to control the type and count of
the fetched messages.

lastReceivedTimestamp The timestamp of the most recent message
received.

maxMessages Maximum number of messages, in a single
response, that the requester can handle.

Upon receiving the request, the receiver returns the oldest messages, of the specified types, with
timestamps equal to or later than the specified timestamp. If there are multiple messages meeting
this criterion, multiple messages can be returned, subject to the maxMessages attribute. The
queuing system discards all pending messages of the specified message types with timestamps
earlier than the specified timestamp.
<Request>
 <GetPendingRequest lastReceivedTimestamp="1999-03-12T18:39:09-08:00"
maxMessages="5">
 <MessageType>SubscriptionChangedMessage</MessageType>
 </GetPendingRequest>
</Request>

8.2 GetPendingResponse
This element contains one or more messages waiting for the requester.
<Response>
 <Status code="200" text="OK"/>
 <GetPendingResponse>
 <cXML version="1.0"
 payloadID="456778@ariba.com"
 timestamp="1999-03-12T18:39:09-08:00">
 <Header>
 <From>
 <Credential domain="AribaNetworkUserId">
 <Identity>admin@ariba.com</Identity>
 </Credential>

cXML/1.0 August 16, 1999

Ariba, Inc. 38

 </From>
 <To>
 <Credential domain="AribaNetworkUserId">

<Identity>aribaadmin@cisco.com</Identity>
 </Credential>
 </To>
 <Sender>
 <Credential domain="AribaNetworkUserId">
 <Identity>admin@ariba.com</Identity>
 <SharedSecret>welcome</SharedSecret>
 </Credential>
 <UserAgent>Ariba.com</UserAgent>
 </Sender>
 </Header>
 <Message>
 <SubscriptionChangeMessage type="new">
 <Subscription>
 <InternalID>1234</InternalID>
 <Name xml:lang="en-US">Q2
Prices</Name>
 <Changetime>1999-03-12T18:39:09-
08:00</Changetime>
 <SupplierID
domain="DUNS">123456789</SupplierID>
 <Format version="2.1">CIF</Format>
 </Subscription>
 </SubscriptionChangeMessage>
 </Message>
 </cXML>
 </GetPendingResponse>
 </Response>

cXML/1.0 August 16, 1999

Ariba, Inc. 39

9 cXML XML Documents
This section contains all the XML documents that comprise the cXML definition.

9.1 cXML.dtd
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/cXML.dtd#4 $
-->

<!-- Imports -->
<!ENTITY % defineCommonModule SYSTEM "Common.mod">
%defineCommonModule;

<!ENTITY % defineBaseModule SYSTEM "Base.mod">
%defineBaseModule;

<!ENTITY % defineSupplierModule SYSTEM "Supplier.mod">
%defineSupplierModule;

<!ENTITY % defineItemModule SYSTEM "Item.mod">
%defineItemModule;

<!ENTITY % defineTransactionModule SYSTEM "Transaction.mod">
%defineTransactionModule;

<!ENTITY % defineTransportModule SYSTEM "Transport.mod">
%defineTransportModule;

<!ENTITY % defineContractModule SYSTEM "Contract.mod">
%defineContractModule;

<!ENTITY % defineIndexModule SYSTEM "Index.mod">
%defineIndexModule;

<!ENTITY % definePendingModule SYSTEM "Pending.mod">
%definePendingModule;

<!ENTITY % defineSubscriptionModule SYSTEM "Subscription.mod">
%defineSubscriptionModule;

<!-- Done with Imports all Elements/Entities are now defined -->

cXML/1.0 August 16, 1999

Ariba, Inc. 40

9.2 Common.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Common.mod#10 $
-->

<!--
 Common types used throughout the cXML definiton.

 The types try to follow the XML DATA definition submitted to the W3C. See
 the following for more information,

 http://msdn.microsoft.com/xml/reference/schema/datatypes.asp
 http://www.w3c.org/TR/1998/NOTE-XML-data-0105/

-->

<!-- Imports are NOT allowed in .mod files -->

<!-- Atomic-level Types -->
<!ENTITY % bin.base64 "CDATA">
<!ENTITY % bin.hex "CDATA">
<!ENTITY % boolean "(0 | 1)"> <!-- 0 is false, 1 is true -->
<!ENTITY % char "CDATA">
<!ENTITY % date "CDATA">
<!ENTITY % datetime.tz "CDATA">
<!ENTITY % fixed.14.4 "CDATA">
<!ENTITY % i8 "CDATA">
<!ENTITY % int "%i8;">
<!ENTITY % r8 "CDATA">
<!ENTITY % number "%r8;">
<!ENTITY % string "CDATA">
<!ENTITY % time.tz "CDATA">
<!ENTITY % ui8 "CDATA">
<!ENTITY % uint "%ui8;">
<!ENTITY % uri "CDATA">
<!ENTITY % uuid "CDATA">

<!-- Higher-level Types -->
<!ENTITY % isoLangCode "CDATA">
<!ENTITY % isoCountryCode "CDATA">
<!ENTITY % URL "%uri;">

cXML/1.0 August 16, 1999

Ariba, Inc. 41

9.3 Base.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Base.mod#19 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 This file defines the basic elements used to build higher level
 constructs in cXML.
-->

<!-- Basic Name/Data Elements -->
<!--
 Name is used to provide an identifier for other elements.

 xml:lang
 ISO 639 language identifiers
-->
<!ELEMENT Name (#PCDATA)> <!-- string -->
<!ATTLIST Name
 xml:lang %isoLangCode; #REQUIRED
>

<!--
 Value is used to represent #PCDATA values in other elements
-->
<!ELEMENT Value (#PCDATA)> <!-- string -->

<!--
 An Extrisic is an element which can be used to extend the data
 associated with known elements.

 Since this Element is of type ANY, it could contain any arbitrary XML
 document within itself, or a binary ![CDATA[]] document.

 name
 Name used to identify this extrinsic.
-->
<!ELEMENT Extrinsic ANY>
<!ATTLIST Extrinsic
 name %string; #REQUIRED
>

<!--
 Description is a string which describes something.

 xml:lang
 an ISO 639 code representing the language in which the description is
 written
-->
<!ELEMENT Description (#PCDATA)> <!-- string -->
<!ATTLIST Description
 xml:lang %isoLangCode; #REQUIRED

cXML/1.0 August 16, 1999

Ariba, Inc. 42

>

<!-- Telephone Number Elements -->
<!--
 International ITU dial code for the country code in question.

 isoCountryCode
 The ISO 3166 country code for the dial code in question
-->
<!ELEMENT CountryCode (#PCDATA)> <!-- uint -->
<!ATTLIST CountryCode
 isoCountryCode %isoCountryCode; #REQUIRED
>

<!--
 The areacode or city code within a CountryCode.
-->
<!ELEMENT AreaOrCityCode (#PCDATA)> <!-- uint -->

<!--
 The local number part of a telephone number.
-->
<!ELEMENT Number (#PCDATA)> <!-- uint -->

<!--
 An extension within relative to the Number element. This element has no
 meaning without an associated Number element.
-->
<!ELEMENT Extension (#PCDATA)> <!-- uint -->

<!--
 TelephoneNumber represents international telephone numbers.a
-->
<!ELEMENT TelephoneNumber (CountryCode, AreaOrCityCode, Number, Extension?)>

<!--
 Phone is a "named" TelephoneNumber.

 name
 specifies an identifier which indicates the type of phone number. US
 examples would include "work","home", etc.
-->
<!ELEMENT Phone (TelephoneNumber)>
<!ATTLIST Phone
 name %string; #IMPLIED
>

<!--
 Fax number.
-->
<!ELEMENT Fax (TelephoneNumber | URL | Email)>
<!ATTLIST Fax
 name %string; #IMPLIED
>

<!-- Addressing Elements -->
<!--
 URL. A string which represents a URL
-->
<!ELEMENT URL (#PCDATA)> <!-- uri -->

cXML/1.0 August 16, 1999

Ariba, Inc. 43

<!ATTLIST URL
 name %string; #IMPLIED
>

<!--
 An email address. Address must conform to RFC 821 (SMTP Standard).
-->
<!ELEMENT Email (#PCDATA)> <!-- string -->
<!ATTLIST Email
 name %string; #IMPLIED
>

<!--
 Contact represents and entity at a location. The nature of this
 element is that it represents a communication "end point" for a
 location.
-->
<!ELEMENT Contact (Name, PostalAddress*, Email*, Phone*, Fax*, URL*)>

<!--
 The DeliverTo part of an Address. This would be internal to the actual
 address know to the outside world. Similar to what an extension is to a
 TelephoneNumber.
-->
<!ELEMENT DeliverTo (#PCDATA)> <!-- string -->

<!--
 Street is a single line of an Address' location.
-->
<!ELEMENT Street (#PCDATA)> <!-- string -->

<!--
 City is the name of the city in an Address' location.
-->
<!ELEMENT City (#PCDATA)> <!-- string -->

<!--
 State is an optional state identifier in an Address' location.
-->
<!ELEMENT State (#PCDATA)> <!-- string -->

<!--
 PostalCode (I have no idea how to describe it)
-->
<!ELEMENT PostalCode (#PCDATA)> <!-- string -->

<!--
 Country is the name of the country in an Address' location

 isoCountryCode
 The ISO 3166 2-letter country code.
-->
<!ELEMENT Country (#PCDATA)> <!-- string -->
<!ATTLIST Country
 isoCountryCode %isoCountryCode; #REQUIRED
>

<!--
 PostalAddress is a real-world location for a business or person.
-->

cXML/1.0 August 16, 1999

Ariba, Inc. 44

<!ELEMENT PostalAddress (DeliverTo*, Street+, City, State?, PostalCode?,
Country)>
<!ATTLIST PostalAddress
 name %string; #IMPLIED
>

<!--
 Address is the association of a Contact and an Location.

 isoCountryCode
 The ISO 3166 country code for the dial code in question

 addressID
 An id for the address. Needed to support address codes for
 relationships that require id references.
-->
<!ELEMENT Address (Name, PostalAddress?, Email?, Phone?, Fax?, URL?)>
<!ATTLIST Address
 isoCountryCode %isoCountryCode; #IMPLIED
 addressID %string; #IMPLIED
>

<!-- Financial Elements -->
<!--
 Money is the representation of the object used to pay for items.

 currency
 specifies the currency in which amount is stated, must conform to ISO
 4217 currency codes.

 alternateAmount
 the amount of money in the alternateCurrency. Optional and used to
 support dual-currency requirements such as the Euro.

 alternateCurrency
 specifies the currency in which the aleternateAmount is stated, must
 conform to ISO 4217 currency codes.
-->
<!ELEMENT Money (#PCDATA)> <!-- number -->
<!ATTLIST Money
 currency %string; #REQUIRED
 alternateAmount %number; #IMPLIED
 alternateCurrency %string; #IMPLIED
>

<!--
 Optional textual child for communicating arbitrary comments or
 description along with the parent.

 xml:lang
 an ISO 639 code representing the language in which the description is
 written
-->
<!ELEMENT Comments ANY>
<!ATTLIST Comments
 xml:lang %isoLangCode; #IMPLIED
>

<!--
 Price per unit of item.

cXML/1.0 August 16, 1999

Ariba, Inc. 45

-->
<!ELEMENT UnitPrice (Money)>

cXML/1.0 August 16, 1999

Ariba, Inc. 46

9.4 Supplier.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Supplier.mod#9 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 Supplier of goods and services. Includes a list of SupplierIDs which
 indentify the Supplier.

 corporateURL
 URL to web site about the supplier

 storeFrontURL
 URL to web site where a user can shop or browse
-->
<!ELEMENT Supplier (Name, Comments?, SupplierID+, SupplierLocation*)>
<!ATTLIST Supplier
 corporateURL %URL; #IMPLIED
 storeFrontURL %URL; #IMPLIED
>

<!--
 One of the locations for a supplier. Supplier location is
 generally a physical location.
-->
<!ELEMENT SupplierLocation (Address, OrderMethods)>

<!--
 OrderMethods is the list of methods by which one can order
 from a supplier. The contact element is the technical contact
 who should be able to assist with order processing issues.
 The list is to be ordered by supplier preference, the first
 element having the highest degree of preference.
-->
<!ELEMENT OrderMethods (OrderMethod+, Contact?)>

<!--
 OrderMethod is a method for ordering. It is comprised of a
 target address for the order and the protocol expected by
 the address.
-->
<!ELEMENT OrderMethod (OrderTarget, OrderProtocol?)>

<!--
 OrderTarget represents an address to which orders can be
 sent.
-->
<!ELEMENT OrderTarget (Phone | Email | Fax | URL | OtherOrderTarget)>

<!--
 OrderProtocol is the communication method to be used when
 communicating an order to a supplier. An example would be "cXML".

cXML/1.0 August 16, 1999

Ariba, Inc. 47

-->
<!ELEMENT OrderProtocol (#PCDATA)> <!-- string -->

<!--
 OtherOrderTarget represents an address which is not enumerated by
 default in the OrderTarget Element. This may contain address targets
 beyond the ability of this document to describe.

 name
 Optional name for target.
-->
<!ELEMENT OtherOrderTarget ANY>
<!ATTLIST OtherOrderTarget
 name %string; #IMPLIED
>

<!--
 Definition of a supplier id. A supplier id is a (domain, value)
 pair so that suppliers have the flexibility to define their id's
 according to an arbitrary convention (e.g., (DUNS, 12345),
 (TaxID, 88888888)).

 domain
 the domain of the id
-->

<!ELEMENT SupplierID (#PCDATA)> <!-- string -->
<!ATTLIST SupplierID
 domain %string; #REQUIRED
>

cXML/1.0 August 16, 1999

Ariba, Inc. 48

9.5 Item.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Item.mod#14 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 Must be a UN/CEFACT (Recommendation 20) unit of measure code.
-->
<!ELEMENT UnitOfMeasure (#PCDATA)> <!-- string -->

<!--
 ID with which the item's manufacturer identifies the item.
-->
<!ELEMENT ManufacturerPartID (#PCDATA)> <!-- string -->

<!--
 Name of the item's manufacturer.
-->
<!ELEMENT ManufacturerName (#PCDATA)> <!-- string -->

<!--
 Classification is used to group items into similar categories.

 domain
 "name" of classification, ie., SPSC
-->
<!ELEMENT Classification (#PCDATA)> <!-- string -->
<!ATTLIST Classification

domain %string; #REQUIRED
>

<!--
 How the supplier identifies an item they sell.

 If SupplierPartID does not provide a unique key to identify the item,
 then the supplier should generate a key which identifies the part
 uniquely when combined with the SupplierID and SupplierPartID. The
 key is call SupplierPartAuxiliaryID.

 An example is where a Supplier would use the same PartID for an
 item but have a different price for units of "EA" versus "BOX".
 In this case, the ItemIDs should be:
 <ItemID>
 <SupplierPartID>pn12345</SupplierPartID>

<SupplierPartAuxiliaryID>EA</SupplierPartAuxiliaryID>
 </ItemID>
 <ItemID>
 <SupplierPartID>pn12345</SupplierPartID>

<SupplierPartAuxiliaryID><foo>well formed XML
here</foo></SupplierPartAuxiliaryID>
 </ItemID>
-->

cXML/1.0 August 16, 1999

Ariba, Inc. 49

<!ELEMENT SupplierPartID (#PCDATA)> <!-- string -->

<!ELEMENT SupplierPartAuxiliaryID ANY>

<!--
 A unique identification of an item. SupplierID is not required since
 ItemIDs never travel alone.
-->
<!ELEMENT ItemID (SupplierPartID, SupplierPartAuxiliaryID?)>

<!--
 ItemDetail contains detailed information about an item. All the data that
 a user would want to see about an item instead of the bare essentials that
 are represented in the ItemID.
-->
<!ELEMENT ItemDetail (UnitPrice, Description+, UnitOfMeasure,
 Classification+, ManufacturerPartID?,
 ManufacturerName?, URL?, Extrinsic*)>

cXML/1.0 August 16, 1999

Ariba, Inc. 50

9.6 Transaction.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Transaction.mod#21 $
-->

<!--
 For better definitions of these Elements/Entities, refer to the cXML
 Transaction Specification documents.
-->

<!-- Imports are NOT allowed in .mod files -->

<!-- Basic transactional elements used throughout -->
<!--
 The total for something.
-->
<!ELEMENT Total (Money)>

<!--
 The bill to for an item.
-->
<!ELEMENT BillTo (Address)>

<!--
 The ship to for a item.
-->
<!ELEMENT ShipTo (Address)>

<!--
 Definition of a cXML Shipping item. Represents a shipping cost in the
 shopping basket (PunchOutResponse) or an order to the supplier
 (SupplierOrder). There could be one of these for the entire order, or one
 per lineitem.

 trackingDomain
 represents the logistics supplier, I.E., "FedEx", "UPS", etc.

 trackingId
 an optional element value that represents the logistics supplier
 tracking number

 tracking
 Deprecated - Do Not Use
-->
<!ELEMENT Shipping (Money, Description)>
<!ATTLIST Shipping
 trackingDomain %string; #IMPLIED
 trackingId %string; #IMPLIED
 tracking %string; #IMPLIED
>

<!--
 Defines a Purchasing Card element used for payment
-->

cXML/1.0 August 16, 1999

Ariba, Inc. 51

<!ELEMENT PCard (PostalAddress?)>
<!ATTLIST PCard
 number %uint; #REQUIRED
 expiration %date; #REQUIRED
 name %string; #IMPLIED
>

<!--
 The list of valid payment types.
-->
<!ENTITY % cxml.payment "PCard">
<!ELEMENT Payment (%cxml.payment;)>

<!--
 Defines an accounting segment.

 type
 The accounting type of this segment.

 id
 The unique key of this Segment against the type.

 description
 Textual description of the Segment. For human readability.
-->
<!ELEMENT Segment EMPTY>
<!ATTLIST Segment
 type %string; #REQUIRED
 id %string; #REQUIRED
 description %string; #REQUIRED
>

<!--
 An accounting object.

 name
 The name of the object containing the specified accounting segments.
-->
<!ENTITY % cxml.accounting "Segment+">
<!ELEMENT Accounting (%cxml.accounting;)>
<!ATTLIST Accounting
 name %string; #REQUIRED
>

<!--
 A charge against an Accounting element.
-->
<!ELEMENT Charge (Money)>

<!--
 The combination of a Charge against an Accounting Element. A distribution
 represents the breakdown of one overall amount into sub-amounts.
-->
<!ELEMENT Distribution (Accounting, Charge)>

<!--
 Definition of a cXML Tax item. This represents what a Tax element should
 be in the classic notion of a line on a PO or Invoice. It can also
 represent a per-lineitem tax element depending on where it appears (inside
 of a item ELEMENT or inside of a something like a supplierOrder ELEMENT).

cXML/1.0 August 16, 1999

Ariba, Inc. 52

 Represents a tax item in the shopping basket. There could be one of these
 for the entire order, or one per lineitem.
-->
<!ELEMENT Tax (Money, Description)>

<!-- Item Elements -->
<!--
 The representation of a line item as it needs to be for sending to a
 supplier.

 quantity
 How many items are desired.

 requisitionID
 The buyers system requisition id for this line item. It might be the
 same as orderID, and it might not be included at all.

-->
<!ELEMENT ItemOut (ItemID, ItemDetail?, SupplierID?, ShipTo?, Shipping?, Tax?,
Distribution*, Comments?)>
<!ATTLIST ItemOut
 quantity %uint; #REQUIRED
 requisitionID %string; #IMPLIED
 requestedDeliveryDate %date; #IMPLIED
>

<!--
 The representation of a line item as it needs to be for sending to a
 buyer.

 quantity
 How many items are desired.
-->
<!ELEMENT ItemIn (ItemID, ItemDetail, SupplierID?, ShipTo?, Shipping?, Tax?)>
<!ATTLIST ItemIn
 quantity %int; #REQUIRED
>

<!-- OrderRequest* Elements -->
<!--
 Definition of an order. This is the data that is send the the supplier
 to have them place an order in their order management system. The new
 world order equivalent of a PO.
-->
<!ELEMENT OrderRequest (OrderRequestHeader, ItemOut+)>

<!--
 Header of an order. This is the data that is send the the supplier
 to have them place an order in their order management system. Money
 represents the total amount of this order.

 orderID
 The buyer system orderID for this request. Basically, what the PO
 number is today.

 orderDate
 The date the order request was created.

 type

cXML/1.0 August 16, 1999

Ariba, Inc. 53

 The type of the order request. Defaults to "new".
-->
<!ELEMENT OrderRequestHeader (Total, ShipTo?, BillTo, Shipping?, Tax?,
Payment?, Comments?)>
<!ATTLIST OrderRequestHeader
 orderID %string; #REQUIRED
 orderDate %datetime.tz; #REQUIRED
 type (new | update | delete) "new"
>

<!--
 The response to an OrderRequest. This is how the supplier confirms they
 have received and are going to act on an OrderRequest.

 orderID
 The buyer system orderID for this request. Basically, what the PO
 number is today.

 orderDate
 The date the order request was created. Should be the same date send
 in the SupplierOrderRequest.
-->
<!ELEMENT OrderResponse EMPTY>
<!ATTLIST OrderResponse
 orderID %string; #REQUIRED
 orderDate %datetime.tz; #REQUIRED
>

<!-- PunchOut* Elements -->
<!--
 Definition of a PunchOut Setup Request. This is the data that is send to
 the the external system that the Ariba ORMS is going to extract catalog
 data from.

 The URL element is the URL we would like the browser re-directed to when
 the PunchOut shopping experience is finished (after the
 PunchOutOrderRequest messages have been exchanged).
-->
<!ELEMENT PunchOutSetupRequest (BuyerCookie, Extrinsic*, BrowserFormPost?,
 SupplierSetup, ShipTo?, ItemOut*)>
<!ATTLIST PunchOutSetupRequest
 operation (create | inspect | edit) #REQUIRED
>

<!ELEMENT BuyerCookie ANY> <!-- any valid XML data -->

<!ELEMENT BrowserFormPost (URL)>
<!ELEMENT SupplierSetup (URL)>
<!ELEMENT PunchOutSetupResponse (StartPage)>
<!ELEMENT StartPage (URL)>

<!--
 Definition of a PunchOut Order Message. This is the data that is send
 back to the Ariba ORMS system from the external system that the PunchOut
 Request was targeted at.
-->
<!ELEMENT PunchOutOrderMessage (BuyerCookie, PunchOutOrderMessageHeader,
ItemIn+)>

<!--

cXML/1.0 August 16, 1999

Ariba, Inc. 54

 Header of a PunchOut Order Request. This is the data that is send from
the
 supplier to transfer the supplier aquired shopping basket back to the
 buyer system.

 operationAllowed
 list of operations that are allowed on the PunchOut shopping basket.
-->
<!ELEMENT PunchOutOrderMessageHeader (Total, ShipTo?, Shipping?, Tax?)>
<!ATTLIST PunchOutOrderMessageHeader
 operationAllowed (create | inspect | edit) #REQUIRED
>

<!ELEMENT PunchOutOrderAckMessage (BuyerCookie, PunchOutOrderMessageHeader,
ItemIn+)>

cXML/1.0 August 16, 1999

Ariba, Inc. 55

9.7 Transport.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Transport.mod#23 $
-->

<!--
 For better definitions of these Elements/Entities, refer to the cXML
 Protocol Specification documents.
-->

<!-- Imports are NOT allowed in .mod files -->

<!-- envelope -->
<!ELEMENT cXML ((Header, Message) |
 (Header, Request) |
 (Response))>

<!ATTLIST cXML
 version %uint; "1.0"
 payloadID %string; #REQUIRED
 timestamp %datetime.tz; #REQUIRED
>

<!-- header -->
<!ELEMENT Header (From, To, Sender)>

<!ELEMENT From (Credential+)>
<!ELEMENT To (Credential+)>
<!ELEMENT Sender (Credential, UserAgent)>

<!--
 A textual string representing who the UserAgent is conducting the cXML
 conversation. Analagous to UserAgent for HTTP conversations.
-->
<!ELEMENT UserAgent (#PCDATA)>

<!--
 A digital signature. The recommended format is self-contained PK7. The
 exact signed content is not that significant but current timestamp would
 be used just as a convention.

 type
 The type of digital signature used.

 encoding
 How is the signature encoded in the XML stream.
-->
<!ELEMENT DigitalSignature ANY>
<!ATTLIST DigitalSignature
 type %string; "PK7 self-contained"
 encoding %string; "Base64"
>

<!--

cXML/1.0 August 16, 1999

Ariba, Inc. 56

 A shared secret. Typically, this is a username/password type of secret
 exchanged through a secure transport before communication takes place.
-->
<!ELEMENT SharedSecret ANY>

<!--
 Represents an identity for a credential.
-->
<!ELEMENT Identity ANY>

<!--
 A combination of an Identity and authentication element. If the
 authentication element is present, it strongly authenticates who/what
 someone is.

 domain
 In what domain is this Credendial represented?
-->
<!ENTITY % cxml.authentication "SharedSecret |
 DigitalSignature"
>
<!ELEMENT Credential (Identity, (%cxml.authentication;)?)>
<!ATTLIST Credential
 domain %string; #REQUIRED
>

<!-- status -->
<!ELEMENT Status (#PCDATA)>
<!ATTLIST Status
 code %uint; #REQUIRED
 text %string; #REQUIRED
>

<!-- message -->
<!ENTITY % cxml.messages "PunchOutOrderMessage |
 PunchOutOrderAckMessage |
 SubscriptionChangeMessage |
 SupplierChangeMessage"
>

<!ELEMENT Message (Status?, (%cxml.messages;))>
<!ATTLIST Message
 deploymentMode (production | test) "production"
 inReplyTo %string; #IMPLIED
>

<!-- request -->
<!ENTITY % cxml.requests "OrderRequest |
 PunchOutSetupRequest |
 GetPendingRequest |
 SubscriptionListRequest |
 SubscriptionContentRequest |
 SupplierListRequest |
 SupplierDataRequest"
>

<!ELEMENT Request (%cxml.requests;)>
<!ATTLIST Request
 deploymentMode (production | test) "production"
>

cXML/1.0 August 16, 1999

Ariba, Inc. 57

<!-- response -->
<!ENTITY % cxml.responses "OrderResponse |
 PunchOutSetupResponse |
 GetPendingResponse |
 SubscriptionListResponse |
 SubscriptionContentResponse |
 SupplierListResponse |
 SupplierDataResponse"
>

<!ELEMENT Response (Status, (%cxml.responses;)?)>

cXML/1.0 August 16, 1999

Ariba, Inc. 58

9.8 Contract.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Contract.mod#11 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!ELEMENT Contract (SupplierID+, Comments?, ItemSegment+)>
<!ATTLIST Contract
 effectiveDate %datetime.tz; #REQUIRED
 expirationDate %datetime.tz; #REQUIRED
>

<!--
 Defines an item segment for the index. An item segment is an
 overlay for index items, allowing suppliers to override certain
 item attributes on a per-contract basis.

 Items may be segmented by some agreed-upon user-specific key that
 is used to determine who is eligible for these particular overlaid
 attributes (such as reduced or different prices). Omitting the
 segmentKey indicates that the supplier wishes to set the given
 contract price system wide (for all users).

 segmentKey - optional agreed-upon string used to segment
 custom prices
-->
<!ELEMENT ItemSegment (ContractItem+)>
<!ATTLIST ItemSegment
 segmentKey %string; #IMPLIED
>

<!--
 A particular (custom) item overlay for a index item. The item is
 referenced by the supplierPartID.

 ItemID - ID for the part to be overlaid.
 UnitPrice - Contract price for item
 Extrinsic - Named overlay. The Extrinsic should be named with the
 item field name it is to overlay. The Extrinsic must contain a
 <value> element which supplies the replacement value for the item
 field.
 For example:
 <ContractItem>
 <ItemId>
 <SupplierPartID>123456</SupplierPartID>
 </ItemId>
 <Extrinsic name="URL">http://www.newaddress.com</Extrinsic>
 </ContractItem>
-->
<!ELEMENT ContractItem (ItemID, UnitPrice?, Extrinsic*)>

cXML/1.0 August 16, 1999

Ariba, Inc. 59

9.9 Index.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Index.mod#10 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 IndexItemAdd is the element used to insert an item in an index.

 ItemID - uniquely identifies the item
 ItemDetail - general information about the item
 IndexItemDetail - Index specific item detail

-->
<!ELEMENT IndexItemAdd (ItemID, ItemDetail, IndexItemDetail)>
<!--
 IndexItemDelete is the element used to remove an item from the
 index.
 ItemID - uniquely identifies the item

-->
<!ELEMENT IndexItemDelete (ItemID) >

<!--
 IndexItemPunchout is the element used to dynamically connect an
 index item to the supplier's resource for that item.

 ItemID - uniquely identifies the item
 PunchoutDetail - Describes the item being accessed
-->
<!ELEMENT IndexItemPunchout (ItemID, PunchoutDetail)>

<!--
 IndexItem is the general ELEMENT for the list of items in an
 index.

 IndexItemAdd - Item(s) to be added to the index
 IndexItemDelete - Item(s) to be removed from the index
 IndexItemPunchout - PunchoutItem(s) to be added to the index

-->
<!ELEMENT IndexItem (IndexItemAdd+ | IndexItemDelete+ | IndexItemPunchout+)>

<!--
 PunchoutDetail is the description of an item which is referenced
 in the index.

-->
<!ELEMENT PunchoutDetail (Description, URL, Classification+,

cXML/1.0 August 16, 1999

Ariba, Inc. 60

 ManufacturerName?, ManufacturerPartID?,
 ExpirationDate?, EffectiveDate?,
 SearchGroupData*, TerritoryAvailable*)>

<!--
 Index is the element used to update the list of goods and/or
 services which are being handled by the system.

 SupplierID - One or more identities by which this supplier is
 known. NOTE: These are to be considered synonyms
 for the same Supplier.
 SearchGroup - Description(s) of parametric search(es) for this
 index
 IndexItem - The list of items with which to modify the index

-->
<!ELEMENT Index (SupplierID+, Comments?, SearchGroup*, IndexItem+)>

<!--
 SearchGroup is a grouping of attributes which constitue a search
 which can be performed against an index.

 Name - Name of the search
 SearchAttribute - List of searchable index fields.
-->
<!ELEMENT SearchGroup (Name, SearchAttribute+)>

<!--
 An attribute that can searched parametrically.

 name - name of the attribute.
 type - the type of the attribute
-->
<!ELEMENT SearchAttribute EMPTY>
<!ATTLIST SearchAttribute
 name %string; #REQUIRED
 type %string; #IMPLIED
>

<!--
 LeadTime specifies, in days, the amount of time required to
 receive the item.
-->
<!ELEMENT LeadTime (#PCDATA)>

<!--
 ExpirationDate is the date after which the element is no longer valid.
 Date must be specified in ISO 8601 format.

-->
<!ELEMENT ExpirationDate (#PCDATA)>
<!--
 EffectiveDate date at which the element becomes valid.
 Date must be specified in ISO 8601 format.
-->
<!ELEMENT EffectiveDate (#PCDATA)>

<!--
 IndexItemDetail contains various index specific elements which
 help to define an index item.

cXML/1.0 August 16, 1999

Ariba, Inc. 61

 LeadTime - time in days to receive the item
 ExpirationDate - Expiration date for the item in this index
 EffectiveDate - Effective date for the item in this index
 SearchGroupData - Parametric search data
 TerritoryAvailable - Country codes
-->
<!ELEMENT IndexItemDetail (LeadTime, ExpirationDate?, EffectiveDate?,
 SearchGroupData*, TerritoryAvailable*)>

<!--
 Specification of a territory (using ISO country and/or region codes)
 in which the particular index item is available.
-->
<!ELEMENT TerritoryAvailable (#PCDATA)>

<!--
 SearchGroupData specifies the data which should be used to identify
 this item in a search.
-->
<!ELEMENT SearchGroupData (Name, SearchDataElement+)>

<!--
 SearchDataElement is a field and value which are used to provide the
 parametric data to a search.
-->
<!ELEMENT SearchDataElement EMPTY>
<!ATTLIST SearchDataElement
 name %string; #REQUIRED
 value %string; #REQUIRED
>

cXML/1.0 August 16, 1999

Ariba, Inc. 62

9.10 Pending.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Pending.mod#4 $
-->

<!--
 For better definitions of these Elements/Entities, refer to the cXML
 Specification documents.
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 A request used for polling for waiting messages. A waiting message, if
 any, will be included in the returned stream. The lastReceivedTimestamp
 attribute, if present, provides the timestamp of the last received
 message. When the Receiver sees this, it can remove messages with earlier
 timestamps from the pending queue.

 The maxMessages attribute is used to indicate the maximum number of
pending
 messages that can be included in the response.
-->
<!ELEMENT GetPendingRequest (MessageType+)>
<!ATTLIST GetPendingRequest
 maxMessages %int; #IMPLIED
 lastReceivedTimestamp %datetime.tz; #IMPLIED
>

<!--
 Indicates the type of message(s) being polled for. The valid values are
 the corresponding element names e.g. SubscriptionChangeMessage.
-->
<!ELEMENT MessageType (#PCDATA)> <!-- string -->

<!--
 The data elements being carried back in the response. These are fully
 formed cXML messages being carried through the Request/Response channel.
-->
<!ELEMENT GetPendingResponse (cXML+)>

cXML/1.0 August 16, 1999

Ariba, Inc. 63

9.11 Subscription.mod
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1996-1999 Ariba, Inc.
 All rights reserved. Patents pending.

 $Id: //ariba/specs/cXML/Subscription.mod#5 $
-->

<!-- Imports are NOT allowed in .mod files -->

<!--
 Indicates that something changed in a buyer's content subscription. Since
 this is a Message, it can come at any time--no explicit Request needs to
 be send first.
-->
<!ELEMENT SubscriptionChangeMessage (Subscription+)>
<!ATTLIST SubscriptionChangeMessage
 type (new | update | delete) #REQUIRED
>

<!--
 A content subscription.
-->
<!ELEMENT Subscription (InternalID, Name, Changetime, SupplierID+, Format?,
Description?)>

<!ELEMENT InternalID (#PCDATA)> <!-- string -->
<!ELEMENT Changetime (#PCDATA)> <!-- datetime.tz -->
<!ELEMENT Format (#PCDATA)> <!-- string -->
<!ATTLIST Format
 version %string; #REQUIRED
>

<!--
 Requests a complete list of catalog subscriptions for a buyer.
-->
<!ELEMENT SubscriptionListRequest EMPTY>

<!--
 The list of Subscriptions for the given buyer.
-->
<!ELEMENT SubscriptionListResponse (Subscription+)>

<!--
 Requests the contents of a catalog that the buyer is subscribed to.
-->
<!ELEMENT SubscriptionContentRequest (InternalID, SupplierID+)>

<!--
 The data associated with a particular subscription.
-->
<!ELEMENT SubscriptionContentResponse (Subscription, SubscriptionContent+)>

<!--
 The actual content associated with a particular subscription.
-->
<!ELEMENT SubscriptionContent (CIFContent | Index | Contract)>

cXML/1.0 August 16, 1999

Ariba, Inc. 64

<!ATTLIST SubscriptionContent
 filename %string; #IMPLIED
>

<!--
 Contents of CIF file in base64 encoding.
-->
<!ELEMENT CIFContent (#PCDATA)> <!-- bin.base64 -->

<!--
 Indicates that something has changed in the supplier data for
 a supplier the buyer has a relationship with. Since this is a message, no
 Request needs to be sent to receive this Message.
-->
<!ELEMENT SupplierChangeMessage (Supplier+)>
<!ATTLIST SupplierChangeMessage
 type (new | update | delete) #REQUIRED
>

<!--
 Requests for a complete list of suppliers the buyer currently has
 relationships with.
-->
<!ELEMENT SupplierListRequest EMPTY>

<!--
 The list of suppliers requested by SupplierListRequest.
-->
<!ELEMENT SupplierListResponse (Supplier+)>

<!--
 Requests for a data associated with a particular supplier identified by
 SupplierID.
-->
<!ELEMENT SupplierDataRequest (SupplierID+)>

<!--
 The data associated with the desired supplier.
-->
<!ELEMENT SupplierDataResponse (Supplier)>

