
cXML User’s Guide
V E R S I O N 1 . 1

J U N E , 2 0 0 0

Ariba, Inc. (Ariba) hereby grants to you a perpetual, nonexclusive, royalty-free, worldwide right
and license to use the cXML specification (the “Specification”) under any Ariba copyrights in the
Specification to use, copy, publish, modify and distribute the Specification. Ariba further agrees to
grant to you a royalty-free license under applicable Ariba intellectual property rights to implement
and use the cXML tags and schema guidelines included in the Specification for the purpose of
creating computer programs that adhere to such guidelines. One condition of this license shall be
your agreement not to assert any intellectual property rights against Ariba and other companies for
their implementation of the Specification. Ariba expressly reserves all other rights it may have in
the material and subject matter of this Specification. Ariba expressly disclaims any and all
warranties regarding this Specification, including any warranty that this Specification or
implementations thereof does not violate the rights of others. This Specification is provided “as is”
without any express or implied warranty. If you publish, copy or distribute this Specification, then
this copyright notice must be attached; however if you modify this Specification, the name of the
modified specification may not include the term “cXML” in the new name. If you submit any
comments or suggestions to Ariba, and Ariba modifies cXML based on your input, Ariba shall own
the modified cXML version.

Information in this document is subject to change without notice.

cXML User’s Guide i

Table of Contents

 Preface . v
Audience and Prerequisites. v
Which Chapters to Read . v

Chapter 1
Introduction to cXML . 1

cXML Capabilities . 1
Catalogs . 2
Punchout . 3
Purchase Orders . 4

Types of Applications that Use cXML . 5
Procurement Applications . 5
Commerce Network Platforms . 5
Punchout Catalogs . 6
Order-Receiving Systems . 6

Content Delivery Strategy . 6
Validation Against DTDs . 7

Getting cXML DTDs. 7
Performing Validation . 8

Profile Transaction . 8
XML Utilities . 9

ii cXML User’s Guide June, 2000

Table of Contents

Chapter 2
Implementing a Punchout Site . 11

Punchout Requirements . 11
Buying Organizations . 11
Suppliers . 13

Punchout Event Sequence. 15
Steps 1 & 2: Punchout Request . 15
Step 3: Product Selection. 16
Step 4: Check Out . 17
Step 5: Transmittal of Purchase Order. 18

Punchout Documents . 19
Punchout Index Catalog. 19
PunchOutSetupRequest . 21
PunchOutSetupResponse. 25
PunchOutOrderMessage . 25

Modifications to Your Web Pages. 27
Launch Page . 28
Start Page . 31
Sender Page . 32
Order Receiver Page . 35

Punchout Website Suggestions . 35
Implementation Guidelines . 35
Buyer and Supplier Cookies . 36
Personalization. 36

Chapter 3
Receiving cXML Purchase Orders 39

Purchase Order Process . 39
Receiving Purchase Orders . 40

OrderRequest . 40
OrderResponse. 42

Accepting Order Attachments . 43

cXML User’s Guide iii

Table of Contents

Appendix A
cXML Language Specification .45

Protocol Specification. 46
Request-Response Model . 46
XML Conventions . 47
cXML Envelope . 48
Wrapping Layers . 50
Header . 52
Request . 54
Response . 54
One-Way (Asynchronous) Model . 57

Basic Elements . 62
Type Entities . 62
Base Elements . 63

Profile Transaction . 63
ProfileRequest . 63
ProfileResponse . 63

Order Definitions . 65
OrderRequest . 65
Response to an OrderRequest . 73

Punchout Transaction . 73
PunchOutSetupRequest . 74
PunchOutSetupResponse. 76
PunchOutOrderMessage . 77

Later Status Changes . 81
DocumentReference . 81
StatusUpdateRequest . 82

Catalog Definitions . 83
Supplier . 84
Index . 86
Contract . 88

Subscription Management Definitions . 89
Supplier Data . 89
Catalog Subscriptions . 93

Message Retrieval Definitions . 96
GetPendingRequest . 96
GetPendingResponse . 96

iv cXML User’s Guide June, 2000

Table of Contents

Appendix B
New Features in cXML 1.1 .99

General Changes to cXML . 99
Improved Multi-Language Support . 99
Centralized DTDs . 100
New Profile Transaction . 100
New Status Codes . 101
New type Attribute for Marketplace Members 101

Changes to Extrinsics . 101
New Contact Element . 102
requisitionID Attribute Supported . 103
Summary of Moved Extrinsic Information 103
Header-Level Extrinsics . 104

Punchout Transaction Improvements . 104
Improved PunchOutSetupRequest. 104
SelectedItem Element . 105
Empty PunchOutOrderMessage . 105
New cXML-base64 Hidden Field . 105

New Purchase Order Features. 106
New lineNumber Attribute . 106
Purchase Order Attachments . 106
New shipComplete Attribute . 107
New ShortName Element . 107

New Purchase Order Status Transaction. 108
New DocumentReference Element . 108
New StatusUpdateRequest Transaction. 109
New Followup Element . 109

 Index . 111

cXML User’s Guide v

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

 P
re

fa
ce

Preface

This document describes how to use cXML (commerce eXtensible Markup
Language) for communication of data related to electronic commerce.

Audience and Prerequisites

This document is intended for programmers designing cXML-enabled applications. It
is oriented toward suppliers that are modifying their e-commerce Websites for
punchout.

cXML is an open, versatile language for the transaction requirements of:

• Electronic product catalogs

• cXML punchout catalogs

• Procurement applications

• Buying communities

Readers should have a working knowledge of e-commerce concepts and the HTTP
Web communication standard.

This document does not describe how to use specific procurement applications or
network e-commerce hubs.

Which Chapters to Read

• E-commerce Business Managers—For an overview of cXML capabilities, read
Chapter 1, “Introduction to cXML.”

• Web Programmers—Web programmers who are implementing e-commerce sites
should read all chapters.

vi cXML User’s Guide June, 2000

Which Chapters to Read Preface

• Punchout Site Administrators—Web engineers experienced with punchout
Websites should read Appendix B, “New Features in cXML 1.1.”

cXML User’s Guide 1

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

od
u

ct
io

n
 t

o
cX

M
L

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 to

cX
M

L

Chapter 1
Introduction to cXML

This chapter introduces cXML (commerce eXtensible Markup Language) for
electronic-commerce transactions.

This chapter provides an overview of cXML. It discusses the following topics:

• cXML Capabilities

• Types of Applications that Use cXML

• Content Delivery Strategy

• Validation Against DTDs

• Profile Transaction

• XML Utilities

cXML Capabilities

cXML allows buyers, suppliers, aggregators, and intermediaries to communicate
using a single, standard, open language.

Successful business-to-business electronic commerce (B2B e-commerce) portals
depend upon a flexible, widely-adopted protocol. cXML is the key to providing the
widest access to your products and services, because it is a well-defined, robust
language designed specifically for B2B e-commerce, and it is the choice of high
volume buyers and suppliers.

cXML transactions consist of documents, which are simple text files with well
defined format and contents. Most types of cXML documents are analogous to
hardcopy documents traditionally used in business.

The following subsections describe the main types of cXML documents.

cXML Capabilities Chapter 1 Introduction to cXML

2 cXML User’s Guide June, 2000

Catalogs

Catalogs are files that convey product and service content to buying organizations.
They describe the products and services you offer and the prices you charge, and they
are the main communication channel from you to your customers.

You create catalogs so that organizations that use procurement applications can see
your product and service offerings and buy from you. Procurement applications read
your catalogs and store them internally in their databases. After a buying organization
approves your catalogs, your content is visible to users, who can choose items and
add them to purchase requisitions.

You can create catalogs for any product or service, regardless of how it is measured,
priced, or delivered.

For each item in a catalog, there is basic information that is required, and optional
information that enables advanced catalog features, such as multi-language
descriptions.

Sending product and service
content to a buying organization

cXML User’s Guide 3

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

od
u

ct
io

n
 t

o
cX

M
L

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 to

cX
M

L

Chapter 1 Introduction to cXML cXML Capabilities

Punchout

Punchout gives you an alternative to static catalog files. Punchout sites are live,
interactive catalogs running on your Website.

If you have an e-commerce Website, you can modify it to support punchout. Punchout
sites communicate with procurement systems over the Internet by using cXML.

For punchout sites, procurement applications display a button instead of product or
pricing details. When users click this button, their Web browsers display pages from
your local Website. Depending on how you implement your pages, users can browse
product options, specify configurations, and select delivery methods. When users are
done selecting items, they click a button that returns the order information to the pro-
curement application. The fully configured products and their prices appear within
users’ purchase requisitions.

Your Website can offer previously agreed-upon contract products and prices.

For more information:

Chapter 2,
“Implementing a
Punchout Site.”

Interactive punchout session between
a user and a supplier Website

cXML Capabilities Chapter 1 Introduction to cXML

4 cXML User’s Guide June, 2000

Purchase Orders

Buying organizations send purchase orders to suppliers to request fulfillment of a
contract.

They can be routed to suppliers through an e-commerce network platform, such as
Ariba Network.

cXML is just one of several possible formats for purchase orders. Other formats
include e-mail, fax, and EDI (X.12 Electronic Data Interchange). However, cXML is
the ideal format for purchase orders because it is flexible, inexpensive to implement,
supports the widest array of data and attachments, and can be used by automated
systems.

For more information:

Chapter 3, “Receiving
cXML Purchase
Orders.”

Purchase order communicated
to a supplier

cXML User’s Guide 5

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

od
u

ct
io

n
 t

o
cX

M
L

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 to

cX
M

L

Chapter 1 Introduction to cXML Types of Applications that Use cXML

Types of Applications that Use cXML

cXML can be used by any e-commerce application. It is currently in use by buying
organizations, vertical and horizontal buying communities, suppliers, and application
vendors.

The following subsections describe the main types of applications that currently use
cXML.

Procurement Applications

Procurement applications, such as Ariba ORMS (Operating Resource Management
System) and Ariba IBX (Internet Business eXchange), use cXML for external
transactions.

Ariba ORMS is an enterprise application that is hosted by large organizations for use
by their employees over an intranet.

Ariba IBX is an Internet-based service that allows the creation of buying communities
that are composed of many small- to medium-sized businesses.

These applications allow communities of users to buy contract products and services
from vendors approved by their purchasing managers. Requested purchases are first
approved by managers in the communities, and approved purchase orders are
transmitted to suppliers through several possible channels, including cXML over the
Internet.

Commerce Network Platforms

Commerce network platforms, such as Ariba Network, are Web-based services for
connecting buyers and suppliers.

These Web services provide features such as catalog validation and file management,
catalog publishing and subscription, automated purchase order routing, and purchase
order history.

Communication between these Web services, buyer applications, and supplier
applications can occur entirely through cXML over the Internet.

Content Delivery Strategy Chapter 1 Introduction to cXML

6 cXML User’s Guide June, 2000

Punchout Catalogs

As described above, punchout catalogs are interactive catalogs, available at supplier
Websites. Punchout catalogs are Web server applications, written in a programming
language such as ASP (Active Server Pages), JavaScript, or CGI, that manage buyers’
punchout sessions.

Punchout catalogs accept punchout requests from procurement applications, identify
the buying organization, and display the appropriate products and prices in HTML
format. Users then select items, configure them, and select options if appropriate.

At the end of the punchout session, the punchout site sends descriptions of the users’
selections, in cXML format, to the procurement applications.

Order-Receiving Systems

Order-receiving systems are applications at supplier sites that accept and process
purchase orders sent by buying organizations. Order-receiving systems can be any
automated system, such as inventory management systems, order-fulfillment systems,
or order-processing systems.

Because it is simple to extract information from cXML purchase orders, it is
relatively easy to create the adapters that enable your existing order-receiving systems
to accept them.

Content Delivery Strategy

Procurement applications present product and service content to users. Suppliers want
to control the way their customers view their products or services, because
presentation is critical to their sales process. Buying organizations want to make
content easily accessible and searchable to ensure high contract compliance.

Buying organizations and suppliers can choose from multiple methods for delivering
product and service content. The particular method to use is determined by agreement
between a buying organization and a supplier, and the nature of the products or
services traded.

For more information:

Chapter 2,
“Implementing a
Punchout Site.”

For more information:

Chapter 3, “Receiving
cXML Purchase
Orders.”

cXML User’s Guide 7

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

od
u

ct
io

n
 t

o
cX

M
L

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 to

cX
M

L

Chapter 1 Introduction to cXML Validation Against DTDs

The following table lists example categories of commonly procured products and
services, and their preferred content delivery methods.

Buying organizations can either store content locally within the organization, or they
can access it remotely on the Internet, through punchout. cXML catalogs support both
storage strategies.

As the table above indicates, punchout offers a flexible framework upon which
suppliers, depending on their commodity or customer, can provide customized
content. The objective of this content strategy is to allow buyers and suppliers to
exchange catalog data in the method that make the most sense.

Validation Against DTDs

Because cXML is an XML language, a set of Document Type Definitions (DTDs)
thoroughly define it. These DTDs are text files that describe the precise syntax and
order of cXML elements. DTDs enable applications to validate the cXML they read
or write.

cXML applications are not required to validate cXML documents, although it is
recommended.

Getting cXML DTDs

DTDs for all versions of cXML are available at consistent locations on cxml.org:

http://xml.cXML.org/schemas/cXML/<version>/cXML.dtd

Commodity Properties Content Delivery Method

Office Supplies,
Internal Supplies

Static content, stable
pricing

Static catalogs

Lab Supplies,
MRO (Maintenance,
Repair, and Operations),
Electronic Parts

Requires normalization to
be useful

Punchout to a vertical
commodity portal

Books,
Chemicals

Large number of line
Items

Punchout to a supplier
hosted site

Computers,
Network Equipment,
Peripherals

Many possible
configurations

Punchout to a supplier
configuration tool

Services,
Printed Materials

Content has highly
variable attributes

Punchout to an electronic
form at a supplier site

Profile Transaction Chapter 1 Introduction to cXML

8 cXML User’s Guide June, 2000

where <version> is the full cXML version number, such as 1.1.007.

Performing Validation

Your applications can use these DTDs to validate all incoming and outgoing cXML
documents. XML validation applications are available on the Web. Microsoft Internet
Explorer 5 has built-in XML validation capability.

For the most robust transaction handling, validate all cXML documents received. If
you detect errors, issue the appropriate error code so the sender can retransmit.

For best performance, cXML clients should not fetch DTDs each time they parse
cXML documents. Instead, they should look at the cXML version in the document
headers and retrieve DTDs that have not already been stored locally.

Profile Transaction

The Profile transaction communicates basic information about cXML servers. It is the
only transaction that all cXML servers must support.

This transaction consists of two documents, ProfileRequest and ProfileResponse.
Together, they retrieve server capabilities, including supported cXML version,
supported transactions, and options to those transactions.

Note: All cXML 1.1 servers must support the Profile transaction.

Clients can use the Profile transaction to “ping” servers to verify that they are
available.

ProfileRequest

The ProfileRequest document has no content. It simply routes to the specified cXML
server.

ProfileResponse

The server responds with a ProfileResponse document, which lists transactions
supported by the cXML server, their locations, and any named options with a string
value.

cXML User’s Guide 9

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

od
u

ct
io

n
 t

o
cX

M
L

1
 In

tr
od

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 t
o

cX
M

L
1

 In
tr

o
d

u
ct

io
n

 to

cX
M

L

Chapter 1 Introduction to cXML XML Utilities

XML Utilities

Utilities for editing and validating XML files are available for free and for purchase
on the Web. The following listing describes a few of these utilities:

• Internet Explorer 5 from Microsoft. An XML-aware Web browser that can
validate XML files against DTDs.

www.microsoft.com/windows/ie/default.htm

• XML Notepad from Microsoft. A simple XML editor.

msdn.microsoft.com/xml/notepad/intro.asp

• XML Authority from Extensibility. A Java-based XML DTD editor, with
hierarchical and graphical views.

www.extensibility.com

• XML Spy from Icon Information Systems. A tool for maintaining DTDs and XML
files, with a grid, source and browser view.

www.icon-is.com

• XMetaL from Softquad Software. A customizable XML authoring tool.

www.softquad.com

• CLIP from Techno2000 USA. An easy-to-use XML authoring tool, with guided
editing.

www.t2000-usa.com

• XMLwriter from Wattle Software. A graphical XML authoring tool designed to
manage XML projects.

www.xmlwriter.net

In addition, the following Websites list more XML tools:

www.xmlsoftware.com
www.xml.com/pub/pt/Editors

http://msdn.microsoft.com/xml/notepad/intro.asp
http://www.microsoft.com/windows/ie/default.htm
http://www.extensibility.com
http://www.icon-is.com
http://www.softquad.com
http://www.xml.com/pub/pt/Editors
http://www.t2000-usa.com
http://www.xmlwriter.net
http://www.xmlsoftware.com

XML Utilities Chapter 1 Introduction to cXML

10 cXML User’s Guide June, 2000

cXML User’s Guide 11

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2
Implementing a Punchout Site

Punchout enables users of procurement applications to access supplier contracts for
products or services that reside at your Website. It eliminates the need for you to send
whole catalogs to buying organizations. Instead, you send them just short files that
contain a description of your storefront, product categories, or products.

This chapter shows how to modify a Website to support punchout. It discusses the
following topics:

• Punchout Requirements

• Punchout Event Sequence

• Punchout Documents

• Modifications to Your Web Pages

• Punchout Website Suggestions

Punchout Requirements

Before buying organizations configure their procurement applications for punchout,
or suppliers implement punchout Websites, both parties must evaluate the benefits
and requirements of punchout.

Buying Organizations

Setup and testing of cXML-compatible procurement applications with a punchout-
enabled supplier can be completed in less than one day.

Because barriers to technical integration are low for buying organizations, the
decision to use punchout should be based on the business practices and types of
commodities purchased. (See “Content Delivery Strategy” on page 6 for a list of
commodities that are well suited for punchout.)

Punchout Requirements Chapter 2 Implementing a Punchout Site

12 cXML User’s Guide June, 2000

Business Issues

Buying organizations should consider the following questions:

• Do requisitioners and approvers have Internet access? If not, would controlled
access to the Internet be allowed?

• Does the buying organization want their suppliers to create and maintain catalog
content (including pricing)?

• Do requisitioners currently procure goods on the Internet? If so, do these goods
require a supplier-side configuration tool or contain unique attributes that cannot
conform to a static content model?

• Does the buying organization use content aggregators for catalogs (for example,
Aspect, TPN Register, or Harbinger)?

• Does the buying organization currently procure services (for example, consultants,
temp services, or maintenance) through the Internet?

• Does the buying organization currently conduct online sourcing?

If the answer to any of the above questions is yes, then punchout might be appropriate
for the buying organization.

Technical Issues

Buying organizations must meet the following technical requirements:

• Direct Internet Access—Users within buying organizations must have direct
Internet access. Punchout relies on regular Web browser sessions where the user
interacts with live supplier Websites. This communication occurs through regular
internet/Internet infrastructure, not through the procurement application.

• Reliable Internet Connection—Internet access must be constantly operational and
reliable. If users cannot procure products because of Internet outages, they are
likely to make rogue purchases.

• Contracts with Punchout Suppliers—Purchasing agents must have established
contracts with punchout-enabled suppliers. Punchout Websites allow access only to
known, authenticated buying organizations.

cXML User’s Guide 13

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Requirements

Suppliers

The term supplier in the context of punchout encompasses more than the traditional
definition of the term. The punchout protocol was designed as a flexible framework
capable of transmitting data about virtually any kind of product or service from any
kind of supplier, distributor, aggregator, or manufacturer.

Example products and services include:

• Computers direct from a manufacturer or reseller

• Chemicals and reagents from an aggregator

• Office supplies from a distributor

• Contract services from a temp agency

You might already have a transactive Website capable of hosting content and
receiving purchase orders. Given this capability, you need to consider both your
business practices and technical resources in deciding whether to implement
punchout.

Business Issues

Suppliers should consider the following questions:

• Do you currently sell your products or services through the Internet? If so, do you
offer customer-specific content (contract pricing) through your Website?

• Do your products and services fall into one of the punchout categories as described
in the chart in “Content Delivery Strategy” on page 6? To review, these categories
include:

Highly configurable products (such as computers)
Large number of line items (such as books)
Unique product attributes (such as chemicals)
Normalized data (such as MRO Supplies)

• Do you prefer to receive purchase orders and/or payment through your Website?

If the answer to any of the above questions is yes, then punchout might be appropriate
for your organization.

Technical Issues

Suppliers must meet the following technical requirements:

Punchout Requirements Chapter 2 Implementing a Punchout Site

14 cXML User’s Guide June, 2000

• Reliable Internet Connection—The Web server infrastructure and Internet
connection must be extremely reliable. If users cannot access remote content, they
are likely to go to another supplier.

• Competent Website Administrators—The punchout Website and supporting
applications will require periodic maintenance and modification. Users’ needs and
your product offerings will change, so you need personnel to modify your punchout
infrastructure.

• Support for Basic Transactions—Punchout Websites do not need to support all
cXML functionality, but they must support the following required transactions:

Profile Transaction
PunchOutSetupRequest
PunchOutSetupResponse
PunchOutOrderMessage

Work Estimate

The following table lists estimates of work required for cXML punchout integration
based on estimates from suppliers:

Understanding XML

The first step to becoming punchout enabled is to understand XML. XML is a
language for describing languages. cXML documents are constructed based on XML
Document Type Definitions (DTDs). Acting as templates, DTDs can be used to

define content models within a cXML document (for example, the
valid order and nesting of elements) and the datatypes of attributes.

To implement a punchout Website, you must have a fundamental
understanding of how to create, parse, query, receive, and transmit
XML data to and from a remote source.

The basic tools to process XML documents are XML parsers.
These parsers are freely available from Microsoft and other
companies (for example, an XML parser is standard in Microsoft
Internet Explorer 5). For a list of XML tools, see “XML Utilities”
on page 9.

Level of Pre-existing Infrastructure Estimated Time for Completion

Transactive site with XML infrastructure 3 weeks with in-house IT staff
3-4 weeks with contractors

Transactive site without XML infrastructure 4 weeks with in-house IT staff
4-5 weeks with contractors

About XML

XML (eXtensible Markup Language) is
a standard for passing data between
Internet applications. XML documents
contain data in the form of tag/value
pairs. XML has a structure similar to
HTML (hypertext markup language),
but Internet applications can extract
and use data from XML documents
more easily than in plain HTML ones.

As Internet applications become more
widespread, XML will become more
prevalent.

cXML User’s Guide 15

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Event Sequence

Punchout Event Sequence

A punchout session is comprised of several distinct steps.

Steps 1 & 2: Punchout Request

Users log in to a procurement application and open new purchase requisitions. They
find desired items by searching their local catalogs by commodity, supplier, or
product description. When they select a punchout item, the procurement application
opens a new browser window and logs them into their accounts at your Website.

The following figure illustrates the punchout request steps:

How does it work? When a user clicks a punchout item, the procurement application
sends a cXML PunchOutSetupRequest document to a network e-commerce hub. Acting
as the trusted third party, the hub accepts the request, verifies the buying organization,
and passes the request to your punchout Website.

Note: All cXML documents sent through the Internet can travel through
secure, SSL (Secure Socket Layer) 3.0-encrypted HTTPS connections.

The purpose of this request is to notify your Website of the buyer’s identity, and to
communicate the operation to be performed. Supported operations include the
following:

• create – Initiates a new punchout session

2. E-commerce network
hub authenticates
buying organization and
opens secure HTTP
session with supplier.

E-commerce HubE-commerce HubE-commerce Hub

Punchout
 Dispatcher
PunchoutPunchout

 Dispatcher Dispatcher

Procurement ApplicationProcurement ApplicationProcurement Application

1. Requisitioner selects
supplier for punchout.
Procurement application
makes request to
e-commerce network hub.

Punchout Event Sequence Chapter 2 Implementing a Punchout Site

16 cXML User’s Guide June, 2000

• edit – Re-opens a punchout session for editing

• inspect – Re-opens a punchout session for inspection (no changes can be made to
the data)

After your Website receives a request, it sends back a PunchOutSetupResponse
containing a URL that tells the procurement application where to go to initiate a
browsing session on your Website.

The procurement application opens a new browser window, which displays a session
logged into an account on your Website. This account can be specific to a region, a
company, a department, or a user.

Step 3: Product Selection

Users select items from your inventory using all the features and services provided by
your Website:

Depending on the product or customer, these features might include the following:

• Configurator tools for building customized products (for example, computers,
organic compounds, or personalized products)

• Search engines for finding desired products from large catalogs.

• Views of normalized data for comparing products based on price, features, or
availability (for example, MRO products)

• Views of attributes unique to a particular commodity (for example, printed
materials, chemical and reagents, or services)

• Real-time pricing, inventory, and availability checking

• Automatic tax and freight calculations based on ship-to destination, size, or
quantity of items (not necessary to calculate during the punchout session)

3. Requisitioner uses
supplier site to find and
configure products.

cXML User’s Guide 17

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Event Sequence

How does it work? After the procurement application directs users to your Website,
the shopping experience is the same as if they had logged on to your Website directly.
Thus, none of the previously listed features and services require modification.

Step 4: Check Out

Your Website calculates the total cost of the user’s selections, including tax, freight,
and customer-specific discounts. Users then click your Website’s “Check Out” button
to send the contents of the shopping cart to the their purchase requisitions within the
procurement application.

The following figure illustrates the check-out steps:

How does it work? When users click your “Check Out” button, your Website sends a
cXML PunchOutOrderMessage containing product details and prices to the procurement
application. You can also send hidden supplier cookies, which can later associate
items with a specific shopping session.

Effectively, you have provided a quote for the requested items—you have not yet
received a purchase order, so you cannot yet book the order.

If users later need to edit any of the items in a purchase requisition, you can allow
them to “re-punchout” to your Website. The procurement application sends back the
contents of the original shopping cart to your Website and users make any changes
there. Upon check out, your Website returns the items to the purchase requisition.

Procurement ApplicationProcurement ApplicationProcurement Application

4. Requisitioner checks
out of your site.

Items then appear in
purchase requisition in
procurement application.

E-commerce HubE-commerce HubE-commerce Hub

Punchout
 Dispatcher
PunchoutPunchout

 Dispatcher Dispatcher

Punchout Event Sequence Chapter 2 Implementing a Punchout Site

18 cXML User’s Guide June, 2000

Your Website is the information source for all punchout items. Changes to the
quantity or the addition of new items to the requisition might alter tax or shipping
charges, which would require recalculation at your Website. Thus, any changes to the
original items need to be made at your Website, not in the procurement application,
hence the need to re-punchout. A re-punchout is simply a PunchOutSetupRequest with
“edit” as its operation.

Step 5: Transmittal of Purchase Order

After the contents of the shopping cart have been passed from your Website to the
user's purchase requisition, the procurement application approval processes take over.
When the purchase requisition is approved, the procurement application converts it
into a purchase order and sends it back to your Website for fulfillment. Purchasing
card data can be transmitted along with the order, or you can invoice the order upon
shipment.

The following figure illustrates purchase order transmittal:

How does it work? The procurement application sends all purchase orders to the
e-commerce hub in cXML format. The hub then routes them to you, using your
preferred order-routing method. When you acknowledge the receipt of a purchase
order, you have effectively booked the order.

For punchout-enabled suppliers, the order routing method should be cXML, because
of the following reasons:

Procurement ApplicationProcurement ApplicationProcurement Application

5. When request is fully
approved, order is sent to
supplier through
e-commerce network hub.

E-commerce HubE-commerce HubE-commerce Hub

Order
 Dispatcher

OrderOrder
 Dispatcher Dispatcher

cXML User’s Guide 19

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Documents

• cXML purchase orders allow embedded supplier cookie information to be
transmitted back to you. Because the supplier cookie is of data type “any”, it does
not easily map to other order routing methods such as fax, e-mail, or EDI.

• Punchout-enabled suppliers are cXML-aware, so accepting cXML purchase orders
is a small incremental effort.

Purchase orders are discussed in detail in Chapter 3, “Receiving cXML Purchase
Orders.”

Punchout Documents

There are four types of cXML documents:

• Punchout Index Catalog

• PunchOutSetupRequest

• PunchOutSetupResponse

• PunchOutOrderMessage

Punchout Index Catalog

Punchout index catalogs are files that list punchout items and point to your punchout
Website.

The following example lists a punchout index catalog:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Index SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<Index>

<SupplierID domain="DUNS">83528721</SupplierID>
<IndexItem>

<IndexItemPunchout>
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>
 <PunchoutDetail>

<Description xml:lang="en-US">Desk Chairs</Description>
<Description xml:lang="fr-FR">Chaises de Bureau</Description>
<URL>http://www.workchairs.com/punchout.asp</URL>
<Classification domain="UNSPSC">5136030000</Classification>

</PunchoutDetail>
</IndexItemPunchout>

Type of cXML document
and URL of DTD

Your identifier for the
punchout item

URL of your punchout
Website (launch page)

Punchout Documents Chapter 2 Implementing a Punchout Site

20 cXML User’s Guide June, 2000

</IndexItem>
</Index>

SupplierID identifies the supplier organization. You can use any identification domain,
but the recommended ones are DUNS (Dun & Bradstreet Universal Naming System)
and NetworkID. For more information about DUNS numbers, see www.dnb.com.

Description specifies the text that the procurement application displays in product
catalogs. You can provide the description in multiple languages, and the procurement
application displays the appropriate one for the user’s locale.

Classification specifies the commodity grouping of the line item to the buyer. All your
products and services must be mapped and standardized to the UNSPSC schema. For
punchout index catalogs, the Classification determines the location of the punchout
item within catalogs displayed to users. For a list of UNSPSC codes, see
www.unspsc.com.

Creating and Publishing Index Catalogs

Create these catalogs and publish them on an e-commerce hub to your customers. The
catalog manager within buying organizations downloads them and stores them for use
with procurement applications.

Users see the contents of your punchout index catalogs alongside regular, static
catalog items.

Punchout Item Granularity

You can create store-level, aisle-level, or product-level catalogs.

• Store-level catalogs list all of your products and services. Users must search to find
the desired item.

• Aisle-level catalogs list related products and services.

• Product-level catalogs list only one product or service. Users need to perform no
searching.

To determine how broad to make punchout items, consider your business model, the
makeup of your product and service offerings, and the structure of your punchout
Website.

The more search and configuration tools you have on your Website, the more broad
you can make the punchout items in your index catalogs.

http://www.unspsc.com
http://www.dnb.com

cXML User’s Guide 21

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Documents

PunchOutSetupRequest

To initiate a punchout session, the user selects your punchout item. The procurement
application generates a PunchOutSetupRequest document and sends it to an e-commerce
hub, which forwards it to your punchout Website.

The following is a sample PunchOutSetupRequest document:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US"
payloadID="933694607118.1869318421@jlee" timestamp="2000-08-15T08:36:47-
07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba ORMS 6.1</UserAgent>

</Sender>
</Header>
<Request>

<PunchOutSetupRequest operation="create">
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<Extrinsic name="CostCenter">610</Extrinsic>
<Extrinsic name="User">john_smith</Extrinsic>
<BrowserFormPost>

<URL>https://aribaorms:26000/punchout.asp</URL>
</BrowserFormPost>
<SupplierSetup>

<URL>http://www.workchairs.com/punchout.asp</URL>
</SupplierSetup>
<SelectedItem>

<ItemOut quantity="1">
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>

</ItemOut>

Originator (buying
organization)

Destination (supplier)

Previous relaying entity
(Ariba Network in this case)

Type of request

Destination for final
PunchOutOrderMessage

Item selected by user

Punchout Documents Chapter 2 Implementing a Punchout Site

22 cXML User’s Guide June, 2000

</SelectedItem>
</PunchOutSetupRequest>

</Request>
</cXML>

The payloadID and timestamp attributes near the beginning are used by cXML clients to
track documents and to detect duplicate documents.

The From, To, and Sender elements allow receiving systems to identify and authorize
parties. The From and To elements in a document do not change. However, as the
document travels to its destination, intermediate nodes (such as Ariba Network)
change the Sender element.

Create, Edit, and Inspect Operations

The operation attribute specifies the type of session the buyer initiates. It can create,
edit, or inspect.

• create sessions generate new shopping carts, which correspond to new purchase
requisitions.

• edit sessions reopen previously created shopping carts for modification. The
procurement application sends line-item data as part of the PunchOutSetupRequest.
The punchout Website can use this data to re-instantiate the shopping cart created
during the original session.

• inspect sessions reopen previously created shopping carts for viewing only. As with
the edit operation, the procurement application sends line-item data as part of the
PunchOutSetupRequest. However, after re-instantiating the shopping cart, the
punchout Website does not allow modification of its contents.

The following example lists an edit request:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US"
payloadID="933695135608.677295401@jlee" timestamp="2000-08-15T08:45:35-07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</To>

cXML User’s Guide 23

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Documents

<Sender>
<Credential domain="AribaNetworkUserId">

<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba ORMS 6.1</UserAgent>

</Sender>
</Header>
<Request>

<PunchOutSetupRequest operation="edit">
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<Extrinsic name="CostCenter">610</Extrinsic>
<Extrinsic name="User">john_smith</Extrinsic>
<BrowserFormPost>

<URL>https://aribaorms:26000/punchout.asp</URL>
</BrowserFormPost>
<SupplierSetup>

<URL>http://www.workchairs.com/punchout.asp</URL>
</SupplierSetup>
<ItemOut quantity="2">

<ItemID>
<SupplierPartID>220-6338</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901
</SupplierPartAuxiliaryID>

</ItemID>
</ItemOut>

</PunchOutSetupRequest>
</Request>

</cXML>

If the user initiated the edit session by selecting a catalog item, the
PunchOutSetupRequest would contain a SelectedItem element, like a create session.

Authentication by an E-commerce Hub

All PunchOutSetupRequest documents route through an e-commerce hub for
authentication and to look up the URL of your punchout Website. The steps are:

1. The hub receives the PunchOutSetupRequest document from the user.

2. The hub verifies the buyer’s ID (From and Shared Secret) with that buyer’s e-
commerce account. It also identifies the requested supplier (To).

3. The hub looks up your shared secret from your account and inserts it (Shared
Secret) into the Sender element.

4. The hub finds the URL of your punchout Website in your account and sends
the PunchOutSetupRequest document to it.

Punchout Documents Chapter 2 Implementing a Punchout Site

24 cXML User’s Guide June, 2000

5. Your Website receives the cXML document and knows that it is
authenticated because it contains your own shared secret.

6. Your Website uses information in the From element to identify the requester
at the company level (for example, acme.com).

7. You can use the Contact and extrinsic data in the body of the request to
uniquely identify the user (for example, John Smith in Finance at
acme.com).

The PunchOutSetupRequest and PunchOutSetupResponse documents pass through the
e-commerce hub for authentication. The PunchOutOrderMessage document (returning
the contents of the shopping basket to the procurement application) travels directly
between your Website and the user through standard HTTP or HTTPS.

Supplier Setup URL and SelectedItem

In previous cXML releases, the SupplierSetup element provided the only way to specify
the URL of your punchout Website. Beginning with cXML 1.1, the e-commerce hub
already knows the URL of your punchout Website.

Also, starting with cXML 1.1, procurement applications can use the SelectedItem
element to specify store-, aisle-, or product-level punchout.

The SupplierSetup element has been deprecated. However, your punchout Website must
handle both methods until all punchout Websites recognize the SelectedItem element.

Contact Data for Extrinsic Data and User Identification

The PunchoutSetupRequest document can contain detailed user information in the
Contact element that your Website can use to authenticate and direct users, such as:

• User name and role

• E-mail address

In addition, the PunchOutSetupRequest might also contain extrinsic data that you can
use to further identify users, such as:

• User cost center and sub account

• Region

• Supervisor

• Default currency

cXML User’s Guide 25

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Documents

Buying organizations configure their procurement applications to insert Contact and
extrinsic data. Ask your customers what data you can expect to receive.

PunchOutSetupResponse

After receiving a PunchOutSetupRequest, your Website sends a PunchOutSetupResponse.
The PunchOutSetupResponse document serves two functions:

• It indicates whether the PunchOutSetupRequest was successful.

• It provides the procurement application with a redirect URL to your Start Page.

It contains a <URL> element that specifies the Start Page URL to pass to the user’s
Web browser for the interactive browsing session. This URL must contain enough
state information to bind to a session context on your Website, such as the identity of
the requester and the contents of the BuyerCookie element.

The following example lists a PunchOutSetupResponse document:

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US" payloadID="933694607739"
timestamp="2000-08-15T08:46:00-07:00">

<Response>
<Status code="200" text="success"></Status>
<PunchOutSetupResponse>

<StartPage>
<URL>
http://xml.workchairs.com/retrieve?reqUrl=20626;Initial=TRUE
</URL>

</StartPage>
</PunchOutSetupResponse>

</Response>
</cXML>

PunchOutOrderMessage

After the user selects items on your Website, configures them, and clicks your “Check
Out” button, you send a PunchOutOrderMessage document to communicate the contents
of the shopping basket to the buyer’s procurement application. This document can
contain much more data than the other documents because it needs to be able to fully
express the contents of any conceivable shopping basket. This document does not
strictly follow the Request/Response paradigm; its use will be explained in detail.

The following example lists a PunchOutOrderMessage:

Punchout Documents Chapter 2 Implementing a Punchout Site

26 cXML User’s Guide June, 2000

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US" payloadID="933695160894"
timestamp="2000-08-15T08:47:00-07:00">

<Header>
<From>

<Credential domain="DUNS">
<Identity>83528721</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>65652314</Identity>

</Credential>
</To>
<Sender>

<Credential domain="workchairs.com">
<Identity> website 1</Identity>

</Credential>
<UserAgent>Workchairs cXML Application</UserAgent>

</Sender>
</Header>
<Message>

<PunchOutOrderMessage>
<BuyerCookie>1CX3L4843PPZO</BuyerCookie>
<PunchOutOrderMessageHeader operationAllowed="edit">

<Total>
<Money currency="USD">763.20</Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="3">

<ItemID>
<SupplierPartID>5555</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">763.20</Money>

</UnitPrice>
<Description xml:lang="en">

<ShortName>Excelsior Desk Chair</ShortName>
Leather Reclining Desk Chair with Padded Arms

</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">5136030000
</Classification>

</ItemDetail>
</ItemIn>

</PunchOutOrderMessage>

cXML User’s Guide 27

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Modifications to Your Web Pages

</Message>
</cXML>

BuyerCookie enables the procurement application to associate a given
PunchOutOrderMessage with its originating PunchOutSetupRequest. Therefore, your
Website should return this element whenever it appears. Do not use the BuyerCookie to
track punchout sessions, because it changes for every session, from create, to inspect,
to edit.

SupplierPartAuxiliaryID acts as a supplier cookie. This field allows you to transmit
additional data, such as quote number or another cXML document. The procurement
application passes it back to you in any subsequent PunchOutSetupRequest edit or inspect
sessions, and in the resulting cXML purchase order. You can use the supplier cookie
to associate items in a purchase requisition with the corresponding items in a
shopping cart at your Website.

UnitOfMeasure describes how the product is packaged or shipped. It must conform to
UN/CEFACT Unit of Measure Common Codes. For a list of UN/CEFACT codes, see
www.unece.org/cefact.

Classification lists the UNSPSC (United Nations Standard Product and Service Code)
commodity code for each selected item. These codes are used by back-end systems
within buyer and supplier organizations for accounting and report generation. For the
list of UNSPSC codes, see www.unspsc.org.

Modifications to Your Web Pages

To receive or send the three cXML punchout documents, you might need to modify or
create four pages on your Website:

• Launch Page

• Start Page

• Sender Page

• Order Receiver Page

To illustrate how you might implement these pages, simple Active Server Page (ASP)
code samples and the Microsoft Internet Explorer 5 XML Parser will be used. Actual
implementation of these pages will vary depending on the supplier development
environment (for example, CGI, JavaScript, or WebObjects).

http://www.unspsc.org
http://www.unece.org/cefact

Modifications to Your Web Pages Chapter 2 Implementing a Punchout Site

28 cXML User’s Guide June, 2000

Launch Page

The Launch Page receives all authenticated PunchOutSetupRequest documents from the
e-commerce hub. It reads the HTTP stream sent from the hub and validates the cXML
request imbedded within that stream against the cXML DTD (in the case of ASP,
using method calls to the Internet Explorer 5 XML parser).

After validation, your Launch Page extracts elements from the document in order to:

1. Identify the user and determine where to redirect that user.

2. Compose a PunchOutSetupResponse document and return it to the sender.

Your Launch Page should store the following data for use by your Start Page:

• Identity of the requester (Sender)

• Identity of the language of the user (xml:lang) so you can provide localized content

• Type of the request (create, edit, or inspect)

• Any extrinsic data that further identifies the user and the user location

The following is a sample Launch Page. This code does not use an XML parser to
dynamically generate the PunchOutSetupResponse, but instead uses a static XML
template into which line item data is filled. This code is intended for illustrative
purposes only.

script language=JScript RUNAT=Server>
function elementValue(xml, elem)
{

var begidx;
var endidx;
var retStr;

begidx = xml.indexOf(elem);
if (begidx > 0) {

endidx = xml.indexOf(’</’,begidx);
if (endidx > 0)

retStr = xml.slice(begidx+elem.length,
endidx);
return retStr;

}
return null;

}

function twoChar(str)
{

var retStr;

cXML User’s Guide 29

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Modifications to Your Web Pages

str = str.toString();
if (1 == str.length) {

retStr = "0" + str;
} else {
retStr = str;
}
return retStr;
}

function timestamp(dt)
{
var str;
var milli;
str = dt.getFullYear() + "-" + twoChar(1 + dt.getMonth()) + "-";
str += twoChar(dt.getDate()) + "T" + twoChar(dt.getHours()) + ":";
str += twoChar(dt.getMinutes()) + ":" + twoChar(dt.getSeconds()) + ".";
milli = dt.getMilliseconds();
milli = milli.toString();
if (3 == milli.length) {

str += milli;
} else {

str += "0" + twoChar(milli);
}
str += "-08:00";
return str;
}

function genProlog(cXMLvers, randStr)
{
var dt;
var str;
var vers, sysID;
var nowNum, timeStr;
if (1.1 > parseFloat(cXMLvers)) {

vers = "1.0";
sysID = "cXML.dtd";

} else {
vers = "1.1.007";

sysID = "http://xml.cXML.org/schemas/cXML/" + vers + "/cXML.dtd";
}
dt = new Date();
nowNum = dt.getTime();
timeStr = timestamp(dt);
str = ’<?xml version="1.1.007" encoding="UTF-8"?>\n’;
str += ’<!DOCTYPE cXML SYSTEM "’ + sysID + ’">\n’;
str += ’<cXML version="’ + vers + ’" payloadID="’ + nowNum + ".";
str += randStr + ’@’ + Request.ServerVariables("LOCAL_ADDR");
str += ’" timestamp="’ + timeStr + ’">’;
return str;

}

Modifications to Your Web Pages Chapter 2 Implementing a Punchout Site

30 cXML User’s Guide June, 2000

</script>
REM Create data needed in prolog.
%<
Randomize
randStr = Int(100000001 * Rnd)
prologStr = genProlog("1.0", randStr)
Response.ContentType = "text/xml"
Response.Charset = "UTF-8"
%>
<%
REM This receives the PunchOutSetup request coming from the e-commerce hub.
REM It takes the ORMSURL and buyercookie, attaches them to the Start Page URL,
REM and sends the response back to the requester.
REM punchoutredirect.asp?bc=2133hfefe&url="http://workchairs/com/..&redirect="

Dim ret
Dim punch
Dim statusText
Dim statusCode
Dim cookie
Dim url
Dim xmlstr
Dim fromUser
Dim toUser
cookie = ""
url = ""
xmlstr = ""
dir = ""
path = Request.ServerVariables("PATH_INFO")
dir = Left(path, InstrRev(path, "/"))
if IsEmpty(dir) then

dir = "/"
end if

REM This command reads the incoming HTTP cXML request
xml = Request.BinaryRead(Request.TotalBytes)
for i = 1 to Request.TotalBytes

xmlstr = xmlstr + String(1,AscB(MidB(xml, i, 1)))
Next
cookie = elementValue(xmlstr, "<BuyerCookie>")
url = elementValue(xmlstr, "<URL>")
fromUser = elementValue(xmlstr, "<Identity>")
newXMLStr = Right(xmlstr, Len(xmlstr) - (InStr(xmlstr,"<Identity>") +

Len("<Identity>")))
toUser = elementValue(newXMLStr, "<Identity>")

%>
REM This formats the cXML PunchOutSetupReponse
<% if IsEmpty(cookie) then %>
<%= prologStr %>

<Response>

cXML User’s Guide 31

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Modifications to Your Web Pages

<Status code="400" Text="Bad Request">Invalid Document. Unable to extract
BuyerCookie.</Status>

</Response>
</cXML>
<% else %>
<%= prologStr %>

<Response>
<Status code="200" text="OK"/>
<PunchOutSetupResponse>

<StartPage>
<URL>http://<%=

Request.ServerVariables("LOCAL_ADDR")%>/<%= dir%>/punchoutredirect.asp?bc=<%=
cookie%>&url="<%= url%>"&from=<%= fromUser%>&to=<%=
toUser%>&redirect=<%= StartPage%></URL>

</StartPage>
</PunchOutSetupResponse>

</Response>
</cXML>
<%end if%>

Your Launch Page should return a StartPage URL that is unique for that punchout
session. In addition, this URL should be valid for only a limited amount of time. By
deactivating this URL, you make it more difficult for unauthorized users to access
your Start Page.

Remember to implement functionality for subsequent edit and inspect sessions. Users
cannot change order details for punchout items (such as quantity) within their
procurement application. They must re-punchout with an edit session. For the greatest
benefit to users, inspect sessions that occur after you receive the order should display
order status.

Start Page

Your Start Page logs the requester into an account on your Website. From your Start
Page, users begin their shopping experience. This page might already exist at your
Website, so modify it to query user name and password information from the
PunchOutSetupRequest document.

Allow only authorized users into your Start Page. If you wait until the check-out step
to authenticate them, you do not protect your confidential pricing or terms.

If you use HTTP browser cookies to track user preferences, destroy them after
sending the PunchOutOrderMessage to buyers. Destroying these cookies prevents the
possibility of offering privileged features to unauthorized users.

Modifications to Your Web Pages Chapter 2 Implementing a Punchout Site

32 cXML User’s Guide June, 2000

Sender Page

The Sender Page sends the contents of the user’s shopping cart to the user. As
described earlier, after users fill their shopping carts, they click your “Check Out”
button.

Below is a simple ASP implementation of this feature. This code does not use an
XML parser to dynamically generate the PunchOutOrderMessage, but instead uses a
static XML template into which line item data is filled. This code is intended for
illustrative purposes only.

This is a portion of a supplier’s Website product page:

<!--#include file="punchoutitem.inc"-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from
url=(0093)https://secure1.shore.net/wbird/cgi/vsc.cgi/wbird/houses/urban.htm?L+wbird+w
adt4101+928011405 -->

<TABLE border=0>
<TBODY>

<TR>
<TD> </TD>
<TD>Jefferson Memorial- A birdfeeder with a

rotunda! This famous American monument will be a unique addition to any garden or yard.
It attracts small to medium sized birds and its dimensions are 11" x 9 1/2" x 8" H.

</TD>
</TR>

</TBODY>
</TABLE>

-Jefferson Memorial
$139.95

<% AddBuyButton 139.95,101,"Bird Feeder, Jefferson Memorial",5 %>

<HR>

The AddBuyButton function sends the PunchOutOrderMessage back to the user.

The following listing is the include file (punchoutitem.inc) referenced above:

<%
REM This asp is included in items.asp, which specifies the item parameters, formats
REM a cXML document, and allows the user to proceed with a checkout of the item.
function CreateCXML(toUser, fromUser, buyerCookie, unitPrice, supPartId, desc)
%>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM
"http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">

cXML User’s Guide 33

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Modifications to Your Web Pages

<cXML version="1.1.007" payloadID="<%= Now &"@"&
Request.ServerVariables("LOCAL_ADDR")%>" timestamp="<%= Now
%>">

<Header>
<From>

<Credential domain="ariba.com">
<Identity><%= toUser%></Identity>

</Credential>
</From>
<To>

<Credential domain="ariba.com">
<Identity><%= fromUser%></Identity>

</Credential>
</To>
<Sender>

<Credential domain="ariba.com">
<Identity><%= toUser%></Identity>

</Credential>
<UserAgent>PunchoutSite</UserAgent>

</Sender>
</Header>
<Message>

<PunchOutOrderMessage>
<BuyerCookie><%= buyerCookie%></BuyerCookie>
<PunchOutOrderMessageHeader
operationAllowed="edit">

<Total>
<Money currency="USD"><%=
unitPrice%></Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="1">

<ItemID>
<SupplierPartID><%= supPartId%></SupplierPartID>
<SupplierPartAuxiliaryID><%= supPartAuxId%>
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD"><%= unitPrice%>
</Money>

</UnitPrice>
<Description xml:lang="en"><%= desc%>
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification

domain="SupplierPartID"><%= supPartId%>
</Classification>

</ItemDetail>
</ItemIn>

Modifications to Your Web Pages Chapter 2 Implementing a Punchout Site

34 cXML User’s Guide June, 2000

</PunchOutOrderMessage>
</Message>

</cXML>
<% end function

function AddBuyButton(unitPrice, supPartId, supPartAuxId, desc)

toUser = Session("toUser")
fromUser = Session("fromUser")

buyerCookie = Session("buyercookie")
url = Session("urlToPost")
if not IsEmpty(buyerCookie) then

%>
<FORM METHOD=POST ACTION=<%= url%>>
<INPUT TYPE=HIDDEN NAME="cxml-urlencoded" VALUE="<% CreateCXML

toUser, fromUser, buyerCookie, unitPrice, supPartId, supPartAuxId, desc%>">
<INPUT TYPE=SUBMIT value=BUY>
</FORM>

<%else%>
</p>
<%

end if
end function
%>

The AddBuyButton function contains the FORM POST that sends the URL-encoded
PunchOutOrderMessage back to the user.

HTTP Form Encoding

To send a PunchOutOrderMessage, you use HTML form encoding, which is a different
transport model than the traditional HTTP request/response model. This different
transport facilitates easier integration between your Website and the procurement
application. It also enables buying organizations to receive XML data without
requiring them to have a Web server available through a firewall.

Instead of sending a PunchOutOrderMessage directly to the procurement application,
your Website encodes it as a hidden HTML Form field and posts it to the URL
specified in the BrowserFormPost element of the PunchOutSetupRequest. The hidden
HTML Form field must be named either cxml-urlencoded or cxml-base64 (these names
are case insensitive).

This encoding permits you to design a checkout Web page that contains the cXML
document. When users click your “Check Out” button, your Website presents the data
(invisible to users) to the procurement application as an HTML Form Submit.

cXML User’s Guide 35

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Website Suggestions

Cancelling Punchout

You might want to add a “Cancel” button to your pages so that users can cancel their
punchout session. The “Cancel” button sends an empty PunchOutOrderMessage that
tells the procurement application that no items will be returned, and to delete exiting
punchout items from the requisition. You can also use it to perform any housekeeping
needed by your Website, such as clearing the shopping cart and closing the user
session.

Order Receiver Page

The Order Receiver Page accepts cXML purchase orders sent by buying
organizations. It could be similar to the Launch Page discussed above.

For information about receiving purchase orders, see Chapter 3, “Receiving cXML
Purchase Orders.”

Punchout Website Suggestions

When planning the implementation of a punchout Website, consider the following
suggestions.

Implementation Guidelines

Follow these guidelines when developing your punchout Website:

• Study the cXML specification.

• Use an XML parser and validate documents against the cXML DTD.

• Use the xml:lang= property to identify users’ languages so you can provide localized
content.

• Use the From credential to identify buying organizations.

• Send a unique, temporary URL for the session on redirect.

• Do not persist browser cookies.

• Do not overburden your customers with extrinsic data requirements.

• For each line item, use UNUOM (United Nations Units of Measure) and UNSPSC
(United Nations Standard Product and Service Codes).

Punchout Website Suggestions Chapter 2 Implementing a Punchout Site

36 cXML User’s Guide June, 2000

• Provide real value to your customers. Display product availability, order status, and
special promotions.

• Checkout should be easy and intuitive. Ideally, users should need to click only three
buttons to buy.

• Code for subsequent edit and inspect sessions. Users cannot change order details
for punchout items (such as quantity) within their procurement application. They
must re-punchout with an edit session.

• For the greatest benefit to users, inspect sessions should display order status.

• Test your punchout Website. Allow time for testing with your customers’
procurement applications.

• Punchout transactions produce quotes, not purchase orders. Implement a cXML
purchase-order-receiving page to accept orders.

Buyer and Supplier Cookies

The buyer and supplier cookies enable both buyers and suppliers to re-instantiate their
own line-item data for their back-end systems.

• Return the buyer cookie (BuyerCookie) you receive. Do not change it.

• Make use of the supplier cookie (SupplierPartAuxiliaryID).

The buyer cookie is analogous to a purchase requisition number; it conveys state that
allows the buying organization’s system to maintain the relationship between a
requisition and a shopping basket.

Likewise, the supplier cookie is analogous to a quote number; it conveys state that
allows your system to maintain a relationship between a shopping basket and the
buyer’s requisition and purchase order. Procurement applications pass the supplier
cookie back to you in subsequent punchout edit or inspect sessions, and in the resulting
purchase order. Your Website should take advantage of the supplier cookie to
eliminate the need to pass visible, supplier-specific data back to the buyer.

Personalization

The header of the PunchOutSetupRequest always identifies the buying organization, but
the request might also contain Contact and Extrinsic data (such as user’s cost center,
user’s location, or product category) that you can use to determine the dynamic URL
to serve to the user.

cXML User’s Guide 37

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

o
ut

 S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
o

ut
 S

it
e

2
 Im

pl
em

en
ti

ng
 a

P

un
ch

ou
t

S
it

e
2

 Im
pl

em
en

ti
ng

 a

P
un

ch
ou

t
S

it
e

Chapter 2 Implementing a Punchout Site Punchout Website Suggestions

Although not all buying organizations send this extrinsic data, it can enable you to
customize your Web store beyond the simple organization level. For example, you
could provide a separate Web store for each cost center within the buying
organization (or each product category or each user).

You could also store and display the user’s previous quotes. You could allow users to
reuse quotes, check the status of orders, and create reports on past activity. To avoid
security problems, store quote history only at the per-user level.

A key consideration during planning is the amount of effort required to implement a
highly dynamic and customized punchout Website. You need to balance between
customization and complexity—a complex Website takes longer to implement and
maintain, but it could offer more value to users. It is recommended that you start with
a simple punchout Website and enhance it over time.

Punchout Website Suggestions Chapter 2 Implementing a Punchout Site

38 cXML User’s Guide June, 2000

cXML User’s Guide 39

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

Chapter 3
Receiving cXML Purchase Orders

This chapter describes how to set up a Website to receive cXML-format purchase
orders. It also describes how to send purchase order status messages to buying
organizations or marketplaces.

Purchase Order Process

Procurement applications convert approved purchase requisitions into one or more
purchase orders. A purchase order is a formal request from a buying organization to a
supplier to fulfill a contract.

cXML is just one format for transmitting purchase orders. Other common formats are
e-mail, fax, and EDI (X.12 Electronic Data Interchange). cXML is the best format for
purchase orders because it allows you to easily automate order processing. cXML’s
well-defined structure allows order-processing systems to easily interpret the
elements within a purchase order. With little or no human intervention, the
appropriate data within purchase orders can be routed to your shipping, billing, and
sales departments, as needed.

In addition, the cXML order-routing method allows the transmittal of any supplier
cookies (SupplierPartAuxiliaryID) and purchase order attachments.

When you configure your account on an e-commerce network hub, you specify a
URL to which all cXML purchase orders will be sent. Upon receiving a purchase
order, you send it to your internal order management system and fulfill it as you
normally would. Your Website must also return an Order Response acknowledgement
to the e-commerce network hub, which tells the buyer that you successfully received
and parsed the purchase order.

You do not need a punchout Website in order to receive cXML purchase orders;
punchout and cXML-order-receiving are distinct capabilities. However, the
infrastructure and applications required for supporting punchout are the same for
receiving cXML purchase orders.

Receiving Purchase Orders Chapter 3 Receiving cXML Purchase Orders

40 cXML User’s Guide June, 2000

Receiving Purchase Orders

There are two types of cXML documents used for communicating purchase orders.
The procurement application sends an OrderRequest, and you respond with an
OrderResponse. These documents pass through the e-commerce network hub.

OrderRequest

The OrderRequest document is analogous to a purchase order. The following example
shows an OrderRequest for an item:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US" payloadID="93369535150910.10.57.136"
timestamp="2000-08-03T08:49:11+07:00">
<Header>

<From>
<Credential domain="AribaNetworkUserId">

<Identity>admin@acme.com</Identity>
</Credential>

</From>
<To>

<Credential domain="DUNS">
<Identity>114315195</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Network V1.1</UserAgent>

</Sender>
</Header>
<Request>

<OrderRequest>
<OrderRequestHeader orderID="DO102880"
orderDate="2000-08-03T08:49:09+07:00" type="new">

<Total>
<Money currency="USD">4688.00</Money>

</Total>
<ShipTo>

<Address isoCountryCode="US" addressID="1000467">
<Name xml:lang="en">Acme, Inc.</Name>
<PostalAddress name="default">

<DeliverTo>John Q. Smith</DeliverTo>
<DeliverTo>Buyers Headquarters</DeliverTo>
<Street>123 Main Street</Street>

cXML User’s Guide 41

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

Chapter 3 Receiving cXML Purchase Orders Receiving Purchase Orders

<City>Mountain View</City>
<State>CA</State>
<PostalCode>94089</PostalCode>
<Country>United States</Country>

</PostalAddress>
<Email name="default">john_smith@acme.com</Email>
<Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1
</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5555555</Number>

</TelephoneNumber>
</Phone>

 </Address>
</ShipTo>
<BillTo>

<Address isoCountryCode="US" addressID="12">
<Name xml:lang="en">Acme Accounts Payable</Name>
<PostalAddress name="default">

<Street>124 Union Street</Street>
<City>San Francisco</City>
<State>CA</State>
<PostalCode>94128</PostalCode>
<Country isoCountryCode="US">US</Country>

</PostalAddress>
 <Phone name="work">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1
</CountryCode>
<AreaOrCityCode>415</AreaOrCityCode>
<Number>6666666</Number>

</TelephoneNumber>
</Phone>

</Address>
</BillTo>
<Shipping>

<Money currency="USD">12.34</Money>
<Description xml:lang="en-us">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">10.74</Money>
<Description xml:lang="en">CA State Tax</Description>

</Tax>
<Payment>

<PCard number="1234567890123456" expiration="2002-03-12"/>
</Payment>

</OrderRequestHeader>
<ItemOut quantity="2" >

<ItemID>

Receiving Purchase Orders Chapter 3 Receiving cXML Purchase Orders

42 cXML User’s Guide June, 2000

<SupplierPartID>220-3165</SupplierPartID>
<SupplierPartAuxiliaryID>E000028901</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">2344.00</Money>

</UnitPrice>
<Description xml:lang="en">Laptop Computer Notebook Pentium® II
processor w/AGP, 300 MHz, with 12.1" TFT XGA Display
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">43171801</Classification>
<URL>http://www.supplier.com/Punchout.asp</URL>
<Extrinsic name="ExtDescription">Enhanced keyboard</Extrinsic>

</ItemDetail>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="Account" id="7720"

description="Office Supplies"/>
<Segment type="CostCenter" id="610"

description="Engineering Management"/>
</Accounting>
<Charge>

<Money currency="USD">4688.00</Money>
</Charge>

</Distribution>
</ItemOut>

</OrderRequest>
</Request>
</cXML>

OrderResponse

The OrderResponse document acknowledges that you received the purchase order and
that it parses correctly. It is not a commitment to execute the purchase order; it
confirms that you received it and that it is a valid cXML document.

<?xml version="1.0"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" payloadID="8/3/2000 8:49:30 PM@205.180.14.45"
timestamp="2000-08-03T08:49:30+07:00">

<Response>
<Status code="200" text="OK"/>

 </Response>
</cXML>

cXML User’s Guide 43

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
 c

X
M

L

P
u

rc
h

as
e

O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

3
 R

ec
ei

vi
n

g
cX

M
L

P

u
rc

ha
se

 O
rd

er
s

Chapter 3 Receiving cXML Purchase Orders Accepting Order Attachments

Accepting Order Attachments

Buyers often need to clarify purchase orders with associated memos, drawings, or
faxes. They can attach files of any type to cXML purchase orders by using MIME
(Multipurpose Internet Mail Extensions).

cXML contains only references to external MIME parts sent within one multipart
MIME envelope (with the cXML document, in an e-mail or faxed together).

The e-commerce network hub receives the attachments, and can forward them to the
supplier or store them for online retrieval.

For more information about purchase order attachments, see “Attachment
Transmission” on page 51.

For more information about the MIME standard, see the following Websites:

www.hunnysoft.com/mime
www.rad.com/networks/1995/mime/mime.htm

http://www.hunnysoft.com/mime
http://www.rad.com/networks/1995/mime/mime.htm

Accepting Order Attachments Chapter 3 Receiving cXML Purchase Orders

44 cXML User’s Guide June, 2000

cXML User’s Guide 45

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A
cXML Language Specification

This appendix describes the protocol and data formats of cXML (commerce
eXtensible Markup Language). It contains all the information you need to implement
any of the supported transactions from either the client or the server system
perspective. Both the protocol interactions and business documents contained in the
transactions are discussed in depth.

Additionally, examples of actual implementations illustrate and clarify the use of
cXML.

This appendix contains the following sections:

• Protocol Specification

• Basic Elements

• Profile Transaction

• Order Definitions

• Punchout Transaction

• Later Status Changes

• Catalog Definitions

• Subscription Management Definitions

• Message Retrieval Definitions

Protocol Specification Appendix A cXML Language Specification

46 cXML User’s Guide June, 2000

Protocol Specification

There are two communications models for cXML transactions: Request-Response
and One-Way. These two models enable simple implementation because the
operations required are strictly described. Both models are required because there are
situations when one model would not be appropriate.

Request-Response Model

Request-Response transactions can be performed only over an HTTP connection. The
following figure illustrates the steps in a Request-Response interaction between
parties A and B:

This transaction contains the following steps:

1. A initiates an HTTP/1.x connection with B on a predetermined URL that
represents B’s address.

2. A uses a POST operation to send the cXML document through the HTTP
connection.

3. A waits for a response to return through the HTTP connection.

4. B has an HTTP/1.x-compliant server that dispatches the HTTP Request to
the resource specified by the URL used in step 1. This resource can be any
valid location known to B’s HTTP server, for example, a CGI program or an
ASP page.

5. B’s resource identified in step 4 reads the cXML document contents and
maps the Request to the appropriate handler for that request.

6. B’s handler for the cXML Request performs the work that the Request
specifies and formats a cXML document as a Response.

7. B sends the cXML Response to A through the HTTP connection established
in step 1.

A B

Response

Request

One HTTP
POST/Response

B Performs
Request A Request-Response

Transaction

cXML User’s Guide 47

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

8. A reads the cXML Response and returns it to the process that initiated the
Request.

9. A closes the HTTP connection established in step 1.

This process is then repeated for further Request/Response cycles.

To simplify the work in the above steps, cXML documents are divided into two
distinct parts:

• Header—Contains authentication information and addressing.

• Request or Response data—Contains a specific request or response and the
information to be passed.

Both of these elements are carried in a parent envelope element. The following
example shows the structure of a cXML Request document:

<cXML>
<Header>

Header information here…
</Header>
<Request>

Request information here…
</Request>

</cXML>

The following example shows the structure of a cXML Response document:

<cXML>
<Response>

Response information here…
</Response>

</cXML>

The Response structure does not use a Header element. It is not needed because the
Response always travels in the same HTTP connection as the Request.

XML Conventions

cXML uses elements to describe discrete items, often properties in traditional
business documents. Information with obvious subdivisions and relations between
those subdivisions such as an address are also described using elements.

cXML makes extensive use of attributes.

Protocol Specification Appendix A cXML Language Specification

48 cXML User’s Guide June, 2000

In cXML, all elements and attribute names use whole words with capitals (not
hyphens) separating the words. Element names begin with an uppercase letter;
attribute names begin with a lowercase letter, for example:

Elements: Sender, Credential, Payment, ItemDetail
Attributes: version, payloadID, lineNumber, domain

cXML Envelope

The envelope element is the root of the cXML document structure and it contains all
other elements. The cXML element is present in each cXML transaction.

The following example shows a fully specified cXML element:

<cXML version="1.1.007" xml:lang="en-US"
 payloadID=1234567.4567.5678@test.ariba.com
 timestamp="1999-03-31T18:39:09-08:00">

cXML has the following attributes:

version
(optional)

Specifies the version of the cXML protocol. A validating XML
parser could also determine the version attribute from the
referenced DTD. However, all cXML documents should include
the version explicitly to assist applications using non-validating
parsers.

xml:lang
(optional)

The locale used for all free text sent within this document. The
receiver should reply or display information in the same or a
similar locale. For example, a client specifying xml:lang=“en-UK”
in a request might receive “en” data in return.

payloadID

A unique number with respect to space and time, used for
logging purposes to identify documents that might have been
lost or had problems. This value should not change for retry
attempts.

The recommended implementation is:

datetime.process id.random number@hostname

timestamp

The date and time the message was sent, in ISO 8601 format.
This value should not change for retry attempts.

The format is YYYY-MM-DDThh:mm:ss-hh:mm (for example,
1997-07-16T19:20:30+01:00).

cXML User’s Guide 49

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

Locale Specified by xml:lang

The xml:lang attribute also appears with most free text elements (such as Description and
Comments). While the XML specification allows the locale for an element to default to
that specified for any parent element, such defaults result in inefficient queries of the
document tree. cXML attempts to keep the locale identifiers together with the
affected strings.

The xml:lang attributes appearing throughout the cXML protocol have no effect upon
formatted data such as numbers, dates and times. As described below for the timestamp
attribute, such discrete values are formatted according to their data types. Longer
strings (and referenced Web pages) not intended for machine processing might
contain a locale-specific numeric or date format that matches a nearby xml:lang
attribute.

Time and other Data Types

The timestamp attribute (and all other dates and times in cXML) must be formatted in
the restricted subset of ISO 8601 described in the Word Wide Web Consortium
(W3C) Note entitled “Date and Time Formats” available at
www.w3.org/TR/NOTE-datetime-970915.html.

Timestamps require a minimum of a complete date plus hours, minutes and seconds.
Fractions of a second are optional. This protocol requires times expressed in local
time with a time-zone offset from UTC (Coordinated Universal Time, also known as
Greenwich Mean Time). The “Z” time zone designator is not allowed.

For example, 2000-04-14T013:36:00-08:00 corresponds to April 14, 2000, 1:36 p.m., U.S.
Pacific Standard Time.

Further references for the date, time, and other data type formats used by cXML are:

• Microsoft’s XML Data Types Reference site,
msdn.microsoft.com/xml/reference/schema/datatypes.asp

• The original XML Data proposal to the Word Wide Web Consortium (W3C),
www.w3c.org/TR/1998/NOTE-XML-data-0105

http://www.w3.org/TR/NOTE-datetime-970915.html
http://msdn.microsoft.com/xml/reference/schema/datatypes.asp
http://www.w3c.org/TR/1998/NOTE-XML-data-0105

Protocol Specification Appendix A cXML Language Specification

50 cXML User’s Guide June, 2000

Wrapping Layers

The cXML element is the body of a normal XML document. A document might begin:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cXML SYSTEM "http://xml.cxml.org/schemas/cXML/1.1.007/cXML.dtd">
<cXML version="1.1.007" xml:lang="en-US"

payloadID="0c300508b7863dcclb_13550"
timestamp="2000-01-09T01:36:05-08:00">
…

This document is normally transmitted via HTTP with a MIME media type of text/xml
and a charset parameter matching the encoding in the document. Because HTTP is
eight-bit clean, any encoding supported by the recipient parser can be used without a
content-transfer-encoding such as base64 or quoted-printable. All XML parsers
support the UTF-8 encoding, which includes all Unicode characters. Applications
should therefore use it when transmitting cXML documents.

Note: According to RFC 2376 “XML Media Types,” the MIME charset
parameter overrides any encoding specified in the XML declaration. Further,
the default encoding for the text/xml media type is us-ascii, not UTF-8 as
mentioned in Section 4.3.3 of the XML Specification. For clarity, cXML
documents should include an explicit encoding in the XML declaration.
MIME envelopes should use a matching charset parameter for the text/xml or
application/xml media type.

An HTTP transmission of a cXML document might include the following MIME and
HTTP headers:

POST /cXML HTTP/1.0
Content-type: text/xml; charset="UTF-8"
Content-length: 1862
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
User-Agent: Java1.1
Host: localhost:8080
Connection: Keep-Alive

<?xml version="1.0" encoding="UTF-8"?>
…

cXML User’s Guide 51

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

Attachment Transmission

When sending an OrderRequest that references external files, the referenced files can
either reside on a server accessible by the supplier, or they can be transmitted along
with the cXML document. This second option requires the use of a multipart MIME
envelope. One cXML requirement for this envelope (over the basics described in
RFC 2046 “Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types”)
is the inclusion of Content-ID headers with each attached file.

The following example shows the required skeleton of a cXML document with an
attached JPEG image (without the HTTP headers shown above):

POST /cXML HTTP/1.0
Content-type: multipart/mixed; boundary=something unique

--something unique
Content-type: text/xml; charset="UTF-8"

<?xml version="1.0" encoding="UTF-8"?>
…
--something unique
Content-type: image/jpeg
Content-ID: <uniqueCID@cxml.org>
…
--something unique--

This skeleton is also all that a receiving MIME parser must be able to process.
Applications that make use of the media type described in RFC 2387 “The MIME
Multipart/Related Content-type” will get much more information if the skeleton is
enhanced:

POST /cXML HTTP/1.0
Content-type: multipart/related; boundary=something unique;

type="text/xml"; start=<uniqueCIDmain@cxml.org>

--something unique
Content-type: text/xml; charset="UTF-8"
Content-ID: <uniqueCIDmain@cxml.org>

<?xml version="1.0" encoding="UTF-8"?>
…
--something unique
Content-type: image/jpeg
Content-ID: <uniqueCID@cxml.org>
…
--something unique--

Protocol Specification Appendix A cXML Language Specification

52 cXML User’s Guide June, 2000

Receiving MIME parsers that do not understand the multipart/related media type must
treat the two examples above identically. Each part of the MIME transmission can
additionally have a Content-transfer-encoding and use that encoding. This addition is
not necessary for HTTP transmission. Content-description and Content-disposition
headers are optional within the cXML protocol, although they provide useful
documentation.

For more information about attaching external files to purchase orders, see
“Attachment” on page 69.

Header

The Header element contains addressing and authentication information. The Header
element is the same regardless of which specific Request or Response is contained in
the body of the cXML message. Applications need the requestor's identity, but not
validation that the information provided for identity is correct.

The following example shows the Header element:

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</From>
<To>

<Credential domain="DUNS">
<Identity>012345678</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>sysadmin@ariba.com</Identity>
<SharedSecret>abracadabra</SharedSecret>

</Credential>
<UserAgent>Ariba Network 1.1</UserAgent>

</Sender>
</Header>

The From and To elements are synonymous with From and To in SMTP mail
messages; they are the logical source and destination of the messages. Sender is the
party that opens the HTTP connection and sends the cXML document.

cXML User’s Guide 53

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

Sender contains the Credential element, which allows the receiving party to authenticate
the sending party. This allows strong authentication without requiring a public-key
end-to-end digital certificate infrastructure. Only a user name and password need to
be issued by the receiving party to allow the sending party to perform Requests.

Initially, Sender and From are the same, However, if the cXML document travels
through e-commerce network hubs, the Sender element changes to indicate current
sending party.

From

This element identifies the originator of the cXML request. It can optionally contain
more than one Credential element, allowing requestors to identify themselves using
multiple identification methods. This use of multiple credentials is analogous to
sending both SMTP and X.400 addresses in an e-mail message.

To

This element identifies the destination of the cXML request. Like the From element, it
can contain more than one Credential to help identify the target.

Sender

This element allows the receiving party to identify and authenticate the party that
opened the HTTP connection. It contains a stronger authentication Credential than the
ones in the From or To elements, because the receiving party must authenticate who is
asking it to perform work.

Credential

This element contains identification and authentication values used in cXML
messages.

Credential has the following attributes:

domain

Specifies the type of credential. This attribute allows
documents to contain multiple types of credentials for multiple
authentication domains.

For messages sent on Ariba Network, for instance, the domain
is usually AribaNetworkUserId or DUNS.

type
(optional)

Requests to or from a marketplace identify both the
marketplace and the member company in From or To Credential
elements. In this case, the credential for the marketplace uses
the type attribute, which is set to the value “marketplace”.

Protocol Specification Appendix A cXML Language Specification

54 cXML User’s Guide June, 2000

Credential contains an Identity element and optionally a SharedSecret or DigitalSignature
element. The Identity element states who the Credential represents, while the optional
authentication elements verify the identity of the party.

The SharedSecret element is used when the Sender has a username/password
combination that the requester recognizes.

The DigitalSignature element can be used if the two parties agree on a common
certificate format and authority. The type attribute on a DigitalSignature element specifies
the type of certificate being used.

Note: Do not use authentication elements in documents sent through one-
way communication. This transport routes through users’ browsers, so users
would be able to see the document source (including Credential elements).

Request

Clients send requests for operations. Only one Request element is allowed for each
cXML envelope element, which simplifies the server implementations, because no de-
multiplexing needs to occur when reading cXML documents. The Request element
can contain virtually any type of XML data.

Request has the following attribute:

Response

Servers send responses to inform clients of the results of operations. Because the
result of some requests might not have any data, the Response element can optionally
contain nothing but a Status element. A Response element can also contain any
application-level data. In the punchout scenarios, that means a PunchOutSetupResponse
element.

Status

This element conveys the success or failure of a request operation.

deploymentMode
(optional)

Indicates whether the request is a test request or a production
request. Allowed values are “production” (default) or “test”.

cXML User’s Guide 55

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

Status has the following attributes:

The attributes of the Status element indicate what happened to the request.

The data within the Status element can be any data needed by the requestor. For a
200/OK status code, there might be no data. However, for a 500/Internal Server Error status
code, it is strongly recommended that the actual XML parse error or application error
be presented. This error allows better one-sided debugging and interoperability
testing.

Servers should not include additional response elements (for example, a
PunchOutSetupResponse element) unless the status code is in the 200 range (for
example, 200/OK).

The HTTP 1.1 specification includes many status codes that are inappropriate for
cXML. Because cXML is layered above HTTP in most cases, many errors (such as
404/Not Found) will be handled by the transport. The 200/OK and 500/Internal Server Error
status codes are most likely. Validation errors in parsing a Request document would
normally result in a transport error, such as an HTTP 400/Bad Request error.

The following table includes other HTTP codes that can be used.

cXML includes very few non-HTTP status codes:

• 550 – Unable to reach next cXML server to complete a transaction requiring
upstream connections. An intermediate hub can return this code when a supplier
site is unreachable. (If upstream connections complete, intermediate hubs should
return errors directly to the client.)

• 551 – Unable to forward request due to supplier misconfiguration. For example, an
intermediate hub failed to authenticate itself to a supplier. Clients cannot rectify this
error, but this error might be resolved before the client retries.

code
The status code of the request. This follows the HTTP status
code model. For example, 200 represents a successful
request.

text The text of the status message. This text aids user readability
in logs, and it consists of canonical strings in English.

xml:lang
(optional)

The language of the data in the Status element. Optional for
compatibility with cXML 1.1. Might be required in future
versions of cXML.

Protocol Specification Appendix A cXML Language Specification

56 cXML User’s Guide June, 2000

• 560 – Temporary server error. For example, a server might be down for
maintenance. Client should retry later.

Status Canonical text Meaning

200 OK The server was able to execute this Request, although
the returned Response might contain application
warnings or errors.

201 Accepted Some processing might not yet have completed.

As mentioned in “StatusUpdateRequest” on page 82,
the client should expect later StatusUpdate transactions if
this status is returned in response to an OrderRequest.

204 No Content All Request information was valid and recognized. The
server has no Response data of the type requested.

In a PunchOutOrderMessage, this status indicates that the
punchout session ended without change to the
shopping cart (or client requisition).

400 Bad Request Request unacceptable to the server, although it parsed
correctly.

401 Unauthorized Credentials provided in the Request (the Sender element)
were not recognized by the server.

402 Payment
Required

This Request must include a complete Payment element.

403 Forbidden The user has insufficient privileges to execute this
Request.

406 Not Acceptable An alias for code 400: Request unacceptable to the
server, although it parsed correctly.

409 Conflict The current state of the server or its internal data
prevented the (update) operation request. An identical
Request might succeed in the future, especially after
another operation has executed.

412 Precondition
Failed

A precondition of the Request (for example, a punchout
session appropriate for an PunchOutSetupRequest edit)
was not met. This status normally implies the client
ignored some portion of a previous transmission from a
server (for example, the operationAllowed attribute of a
PunchOutOrderMessageHeader).

417 Expectation
Failed

Request implied a resource condition that was not met.
One example might be a SupplierDataRequest asking for
information about a supplier unknown to the server. This
status might imply lost information at the client or server.

500 Internal Server
Error

Server was unable to complete the Request.

501 Not
Implemented

The server does not implement the particular Request.
For example, PunchOutSetupRequest or the requested
operation might not be supported. Status normally
implies the client has ignored the server’s profile.

cXML User’s Guide 57

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

When receiving unrecognized codes, cXML clients must handle them according to
their class. Therefore, older clients should treat all new 2xx codes as 200, 4xx codes as
400 and 5xx codes as 500. This behavior allows for both further expansions of the
cXML protocol and server-specific codes without loss of interoperability.

One-Way (Asynchronous) Model

Unlike Request-Response transactions, One-Way messages are not restricted to the
HTTP transport.

One-way messages are for situations when an HTTP channel (a synchronous request-
response type operation) is not appropriate. The following figure shows an example
of how A and B might communicate with messages instead of the Request-Response
transaction.

In this case, a possible scenario would be:

1. A formats and encodes a cXML document in a transport that B understands.

2. A sends the document using the known transport. A does not (and cannot)
actively wait for a response to come back from B.

3. B receives the cXML document and decodes it out of the transport stream.

4. B processes the document.

In the One-Way model, A and B do not have an explicit Request-Response cycle. For
example, between One-Way messages, messages from other parties might arrive and
other conversations could take place.

To fully specify a one-way transaction, the transport used for the message must also
be documented. For the cXML transactions that use the one-way approach, the
transport and encoding are specified. A common example of a transaction that uses
one-way is the PunchOutOrderMessage.

One-way messages have a similar structure to the Request-Response model:

<cXML>
<Header>

A B

Message One-Way Message
(Asynchronous)

Protocol Specification Appendix A cXML Language Specification

58 cXML User’s Guide June, 2000

Header information here…
</Header>
<Message>

Message information here…
</Message>

</cXML>

The Header element is treated exactly as it is in the Request-Response case. The cXML
element is also identical to the one described above. The easiest way to tell the
difference between a one-way message and a Request-Response message is the
presence of a Message element (instead of a Request or Response element). The
following section discusses the Message element in more detail.

Message

This element carries all the body level information in a cXML message. It can contain
an optional Status element, identical to that found in a Response element—it would be
used in messages that are logical responses to request messages.

Message has the following attributes:

The inReplyTo attribute can also reference the payloadID of an earlier Request or Response
document. When a Request-Response transaction initiates a “conversation” through
multiple one-way interactions, the first message can include the payloadID of the most
recent relevant Request or Response that went in the other direction. For example, a
Message containing a PunchOutOrderMessage might include an inReplyTo attribute
containing the payloadID of the PunchOutSetupRequest that started the punchout session.
(The BuyerCookie included in the punchout documents performs a similar function to
such a use of the inReplyTo attribute.)

Transport Options

There are two commonly used transports for one-way messages: HTTP and URL-
Form-Encoding. These are just two of the well-defined transports today; more could
become supported in the future.

deploymentMode
(optional)

Indicates whether the request is a test request or a production
request. Allowed values are “production” (Default) or “test”.

inReplyTo
(optional)

Specifies to which Message this Message responds. The
contents of the inReplyTo attribute would be the payloadID of a
Message that was received earlier. This would be used to
construct a two-way conversation with many messages.

cXML User’s Guide 59

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

HTTP

HTTP is used for one-way communication to allow procurement applications to pull
information. The one type of transaction that uses one-way HTTP communication is
GetPendingRequest, which is discussed on page 96.

URL-Form-Encoding

This transport is best understood by examining how the PunchOutOrderMessage
transaction is performed. URL-Form-Encoding enables integration between a remote
Website and procurement applications. It also serves as a way to avoid requiring a
listening server on the buyer’s system that is directly accessible through the Internet.

The PunchOutOrderMessage cXML message is not directly sent to the procurement
application by the remote Website, but is encoded as a hidden HTML Form field and
posted to the URL specified in the BrowserFormPost element of the
PunchOutSetupRequest. When the user clicks Check Out, the Website sends the data to
the procurement application as an HTML Form Submit. The following diagram
illustrates what happens:

The semantics of packing and unpacking are described below.

Remote
Website

Originating
System

Web
Browser

Internet

HTML page with
Form-encoded
cXML message

User clicks Submit
button, Form is

sent to URL
specified by
Originating

System
Form is decoded,
cXML message
extracted and

passed to
Originating System

as a new cXML
Request

1

2

3

Protocol Specification Appendix A cXML Language Specification

60 cXML User’s Guide June, 2000

Form Packing

The PunchOutOrderMessage document is URL-Encoded (per the HTTP specification)
and assigned to a hidden field on the Form named cXML-urlencoded. The HTML Form
element is assigned a METHOD of POST and an ACTION consisting of the URL
passed in the BrowserFormPost element of the PunchOutSetupRequest. For example:

<FORM METHOD=POST
ACTION="http://workchairs.com:1616/punchoutexit">

<INPUT TYPE=HIDDEN NAME="cXML-urlencoded"
VALUE="URL-Encoded PunchOutOrderMessage document">

<INPUT TYPE=SUBMIT VALUE="Proceed">
</FORM>

Additional HTML tags on the page might contain the above fragment to describe the
contents of the shopping basket in detail.

Note: When Web servers send the cXML-urlencoded field, it is not yet URL
encoded. This encoding is required only when the form is submitted by Web
browsers (when users click Check Out in the above example). Web browsers
themselves meet this requirement. The Web server must HTML-encode only
the field value, escaping quotation marks and other special characters, so the
form displays properly for the user.

The name cXML-urlencoded is case insensitive.

For cXML-urlencoded data, the receiving parser cannot assume a charset parameter
beyond the default for media type text/xml. No character encoding information for the
posted data is carried in an HTTP POST. The receiving Web server cannot determine
the encoding of the HTML page containing the hidden field. The cXML document
forwarded in this fashion must therefore use us-ascii character encoding. Any
characters (including those “URI encoded” as “%XX”) found in the XML source
document must be in the “us-ascii” set. Other Unicode symbols can be encoded using
character entities in that source document.

Base64 Encoding

The cXML-base64 hidden field eases handling of international documents. cXML
documents containing symbols outside of “us-ascii” should use this field instead of
the cXML-urlencoded hidden field. This alternative has almost identical semantics, but
the entire document is base64-encoded throughout transport and not HTML-encoded
to the browser or URL-encoded to the receiving Web server. Base64-encoding is
described in RFC 2045 “Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies.”

cXML User’s Guide 61

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Protocol Specification

The name cXML-base64 is case insensitive.

Base64-encoding from the supplier site through the browser and to the receiving Web
server at the client maintains the original character encoding of a cXML document.
Though no charset parameter arrives with the posted information, the decoded
document (after the transfer encoding is removed) can be treated as the media type
application/xml. This encoding allows the receiving parser to honor any encoding
attribute specified in the XML declaration. For this field (as for any application/xml
documents), the default character encoding is UTF-8.

Either of these hidden fields (cXML-urlencoded or cXML-base64) must appear in the data
posted to the procurement application. Though recipients should first look for
cXML-base64 in the data, it is wasteful to send both fields.

Form Unpacking and Processing

The procurement application, which previously provided the appropriate URL,
receives an HTML Form POST containing the Form data as described above. The
Form POST processor would first look for the cXML-base64 variable, extract the value
and base64-decode its contents. If that field does not exist in the data, the Form POST
processor would look for the cXML-urlencoded variable, extract the URL-encoded
cXML message and URL-decode it. The decoded content of the field is then
processed as if it had been received through a normal HTTP Request/Response cycle.

The implied media type of the document after decoding varies, with different possible
character encodings:

• The cXML-urlencoded variable is of media type text/xml with no charset attribute. It is
thus restricted to the us-ascii character encoding. The receiving parser must ignore
any encoding attribute in the XML declaration of the cXML document because the
browser might have changed the encoding.

• The cXML-base64 variable is of media type application/xml and thus might have any
character encoding (indicated by the encoding attribute of the contained XML
declaration, if any).

The primary difference between this transaction and a normal Request-Response
transaction is that there is no response that can be generated, because there is no
HTTP connection through which to send it.

Basic Elements Appendix A cXML Language Specification

62 cXML User’s Guide June, 2000

Basic Elements

The following entities and elements are used throughout the cXML specification.
Most of the definitions here are basic vocabulary with which the higher-order
business documents are described. The common type entities and the common
elements representing low-level objects are defined here.

Type Entities

Most of these definitions are from the XML-Data note submission to the World Wide
Web Consortium (W3C). A few higher-level type entities that are also defined here
are not from XML-Data. These types are also discussed in “cXML Envelope” on
page 48.

isoLangCode

An ISO Language Code from the ISO 639 standard.

isoCountryCode

An ISO Country Code from the ISO 3166 standard.

xmlLangCode

A language code as defined by the XML 1.0 Specification (at
www.w3.org/TR/1998/REC-xml-19980210.html). In the most common case, this
includes an ISO 639 Language Code and (optionally) an ISO 3166 Country Code
separated by a hyphen. Unlike the full XML recommendation, IANA or private
language codes should not be used in cXML. IANA and private subcodes are
allowed, though they should come after a valid ISO 3166 Country Code.

The recommended cXML language code format is xx[-YY[-zzz]*]? where xx is an
ISO 639 Language code, YY is an ISO 3166 Country Code and zzz is an IANA or
private subcode for the language in question. Again, use of the Country Code is
always recommended. By convention, the language code is lowercase and the country
code is uppercase. This is not required for correct matching of the codes.

unitOfMeasure

UnitOfMeasure describes how the product is packaged or shipped. It must conform to
UN/CEFACT Unit of Measure Common Codes. For a list of UN/CEFACT codes, see
www.unece.org/cefact.

http://www.w3.org/TR/1998/REC-xml-19980210.html
http://www.unece.org/cefact

cXML User’s Guide 63

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Profile Transaction

URL

A URL (Uniform Resource Locator) as defined by the HTTP/1.1 standard.

Base Elements

These elements, used throughout the specification, range from generic ones such as
Name and Extrinsic to specific ones such as Money.

Profile Transaction

The ProfileRequest and ProfileResponse documents must be supported by cXML 1.1
server implementations. This transaction can be used to retrieve server capabilities,
including supported cXML version, transactions, and options on those transactions.

The response should list all Requests supported at a particular Website, not
necessarily all those supported by the company. Suppliers that can receive
OrderRequest documents and send various messages or initiate Request/Response
transactions describe their OrderRequest support in the profile transaction.

The Profile transaction can be used to “ping” a server within the cXML protocol.

ProfileRequest

This element has no content. It is simply routed to the appropriate cXML server using
the Header. The server responds with a single ProfileResponse as described below. The
only dynamic portions of this response are the payloadId and timestamp attributes of the
cXML element itself. In this particular case, a supplier is not required to provide
responses in multiple locales.

An example Request of this type is:

<Request>
<ProfileRequest />

</Request>

ProfileResponse

This element contains a list of supported transactions, their locations, and any
supported options. While no options are yet defined, the following is a possible
ProfileResponse:

Profile Transaction Appendix A cXML Language Specification

64 cXML User’s Guide June, 2000

<ProfileResponse effectiveDate="2001-03-03T12:13:14-05:00">
<Option name="Locale">1</Option>
…
<Transaction requestName="PunchOutSetupRequest">

<URL>http://www.workchairs.com/cXML/PunchOut.asp</URL>
<Option name="operationAllowed">create inspect</Option>
<Option name="dynamic pricing">0</Option>
…

</Transaction>
…

</ProfileResponse>

A more likely ProfileResponse from a current supplier might be:

<ProfileResponse effectiveDate="2000-01-01T05:24:29-08:00">
<Transaction requestName="OrderRequest">

<URL>http://workchairs.com/cgi/orders.cgi</URL>
</Transaction>
<Transaction requestName="PunchOutSetupRequest">

<URL>http://workchairs.com/cgi/PunchOut.cgi</URL>
</Transaction>

</ProfileResponse>

ProfileResponse has the following attribute:

Option

Value for a defined option (either for the overall service or for a specific transaction).
No options are yet defined.

Option has the following attribute:

Transaction

The description of a transaction supported by this service. The Profile definition
currently indicates the locations to which to send specific requests. Future versions of
cXML will add Option definitions and extend the Profile information to include more
information about supported requests.

effectiveDate The date and time when these services became available.
Dates should not be in the future.

name
The name of this option. This attribute should not be viewed
directly (because the profile is intended for machine
consumption).

cXML User’s Guide 65

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Order Definitions

The Transaction element must contain a URL element.

Transaction has the following attribute:

Order Definitions

The cXML ordering documents are OrderRequest and a generic response. OrderRequest
is analogous to a purchase order. The response is the acknowledgment that the
supplier received the purchase order. It is not a commitment to execute the purchase
order, but a confirmation that it was correctly received.

OrderRequest

The following example illustrates the structure of the OrderRequest element:

<OrderRequest>
<OrderRequestHeader … >

…
</OrderRequestHeader>
<ItemOut … >

…
</ItemOut>
<ItemOut … >

…
</ItemOut>

</OrderRequest>

OrderRequestHeader

The following example shows an OrderRequestHeader in full detail:

<OrderRequestHeader orderID="DO1234"
orderDate="1999-03-12T13:30:23+8.00"
type="new"
requisitionID="R1234">

<Total>

requestName

A specific request that this server accepts at the given URL.
Values can be:

ProfileRequest OrderRequest
PunchOutSetupRequest StatusUpdateRequest
GetPendingRequest SubscriptionListRequest
SupplierListRequest SubscriptionContentRequest
SupplierDataRequest

Order Definitions Appendix A cXML Language Specification

66 cXML User’s Guide June, 2000

<Money currency="USD">12.34</Money>
</Total>
<ShipTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Headquarters">

<DeliverTo>Joe Smith</DeliverTo>
<DeliverTo>Mailstop M-543</DeliverTo>
<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</ShipTo>
<BillTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Finance Building">

<Street>124 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</BillTo>
<Shipping>

<Money currency="USD">12.34</Money>
<Description xml:lang="en-US">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">12.34</Money>
<Description xml:lang="en">CA State Tax</Description>

</Tax>
<Payment>

<PCard number="1234567890123456" expiration="1999-03-12"/>
</Payment>
<Contact role="purchasingAgent">

<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Email>sepants@acme.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>555-1212</Number>

</TelephoneNumber>
</Phone>

</Contact>

cXML User’s Guide 67

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Order Definitions

<Comments xml:lang="en-US">
Anything well formed in XML can go here.

</Comments>
<Followup>

<URL>http://acme.com/cgi/orders.cgi</URL>
</Followup>

</OrderRequestHeader>

OrderRequestHeader has the following attributes:

OrderRequestHeader and ItemOut (when extended with ItemDetail) contain similar
information. Where OrderRequestHeader includes overall billing (BillTo) and payment
(Payment) information, ItemOut instead describes the individual items (in ItemID,
ItemDetail and Distribution).

Do not use the information in OrderRequestHeader as the default for item-specific
elements. If present, ShipTo, Shipping, Contact and each named Extrinsic must appear
either with every ItemOut or in the OrderRequestHeader. Comments and Tax elements can
appear simultaneously at both levels. But, the different Comments elements should not
duplicate information, and the header-level Tax element contains a total for the order.

Total

This element contains the total monetary amount of the order. It is a container for the
Money element.

ShipTo/BillTo

These elements contain the addresses of the Ship To and Bill To entities on the
OrderRequest.

orderID The identifier for this order. Analogous to the purchase order
number.

orderDate The date and time this order was placed, in ISO 8601 format.

type
(optional)

Type of the request: new (default), update, or delete.

requisitionID
(optional)

The buyer’s requisition identifier for this entire order. It might be
the same as orderID, and it might not be included at all. Must
not be included if requisitionID is specified in any ItemOut
elements.

shipComplete
(optional)

A preference against partial shipments. The only allowed value
is “yes”. By default, items are shipped when available.

Because orders might include items with varying ShipTo
elements, only groups of items with common shipping locations
should be held until complete when shipComplete=“yes”.

Order Definitions Appendix A cXML Language Specification

68 cXML User’s Guide June, 2000

One order must be billed to a single entity. Therefore, the BillTo element appears only
in the OrderRequestHeader. Items from an order can be sent to multiple locations. Like
the Shipping element (see next section), the ShipTo element can therefore appear either
in the OrderRequestHeader or in individual ItemOut elements.

Shipping

This element describes how to ship the items in the request and the cost of doing so. If
the Shipping element is present in the OrderRequestHeader, it must not appear on
individual ItemOut elements. If it is not present in the OrderRequestHeader, it must
appear in the ItemOut elements.

Tax

This element contains the tax associated with the order. This element is present if the
buying organization computes tax. When appearing within the OrderRequestHeader, Tax
describes the total tax for an order. Tax elements at the item level can describe
individual tax amounts.

Payment

This element describes the payment instrument used to pay for the items requested. In
the above example, the Payment element contains a PCard element, which encodes a
standard purchasing card into the cXML document. In the future, other payment
instruments will be defined and supported.

Contact

Contact information the supplier can use to follow up on an order. This element
identifies a person and provides a list of ways to reach that person or entity. The only
required element is the Name of the contact. Optional and repeating possibilities
include PostalAddress (not recommended for immediate correction of order problems),
Email, Phone, Fax, and URL.

Buying organizations might choose to use this element to identify the original
requestor, the procurement application system administrator, or some other contact
who can take responsibility for correcting problems with orders. Contact can differ
from both BillTo and ShipTo information for an order.

Contact has the following attribute:

role
(optional)

The position of this person within the procurement process.
Can take the values endUser, administrator, purchasingAgent,
technicalSupport, customerService or sales.

cXML User’s Guide 69

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Order Definitions

The same Conact role must not appear at both the header and item levels.

There is no default role, due to the disparate contents of the Contact element. So,
cXML applications treat a Contact without a role attribute as an additional role.

Comments

Arbitrary human-readable information buyers can send within purchase orders. This
string data is not intended for the automated systems at supplier sites.

The Comments element can contain an Attachment element for including external files.

Attachment

Comments can attach external files to augment purchase orders. The Attachment element
appears within Comments, and it contains only a reference to the external MIME part
of the attachment. All attachments should be sent in a single multipart transmission
with the OrderRequest document. Even if this is not possible, the contentID provided by
the Attachment element must be usable to retrieve the attachment.

For details about the transfer of attached files, see “Attachment Transmission” on
page 51.

Attachment contains a single URL with scheme “cid:”. An attached file in a cXML
document might appear as:

<Comments>
<Attachment>

<URL>cid: uniqueCID@cxml.org</URL>
</Attachment>
Please see attached image for my idea of what this
should look like
</Comments>

The Comments element appears in many places within the cXML protocol, but it can
contain the Attachment element only within OrderRequest documents.

Followup

Specifies the URL to which future StatusUpdateRequest documents should be posted.
This location is the input location for any later documents that reference the current
OrderRequest document.

Order Definitions Appendix A cXML Language Specification

70 cXML User’s Guide June, 2000

Extrinsic

This element contains machine-readable information related to the order, but not
defined by the cXML protocol. In contrast, the Comments element passes information
for human use. Extrinsic elements contain data that is likely to appear in later
documents; the Comments element does not. At this level, Extrinsic extends the
description of all items contained in the purchase order. Some Extrinsic information
might also describe the overall purchase order without affecting the meaning of any
contained ItemOut.

Each named Extrinsic can appear only once within the lists associated with the
OrderRequestHeader and individual ItemOut elements (within the contained ItemDetail
elements). The same name must not appear in both the OrderRequestHeader list and any
list associated with the ItemOut elements. If the same Extrinsic name and value is
repeated in all ItemOut lists, it should be moved to the OrderRequestHeader.

The Extrinsic element can also appear in the IndexItem, PunchOutSetupRequest and
ContractItem elements. These contexts are described later in this document.

ItemOut

The following example shows a minimum valid ItemOut element.

<ItemOut quantity="1">
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>

</ItemOut>

ItemOut has the following attributes:

quantity

The number of items desired. Fractions are allowed for
some units of measure. The value might have already
been checked by the supplier during a punchout session.
Should never be negative.

lineNumber
(optional)

Position of this item within an order. This ordinal value
increases once per ItemOut in a “new” OrderRequest.
Clients should always specify this attribute in an
OrderRequest, although it might not be useful in other
ItemOut contexts.

requisitionID
(optional)

The buyer’s requisition identifier for this line item. Must not
be included if requisitionID is specified in the
OrderRequestHeader.

requestedDeliveryDate
(optional)

The date item was requested for delivery, which allows
item-level delivery dates in the OrderRequest. It must be in
ISO 8601 format.

cXML User’s Guide 71

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Order Definitions

The lineNumber attribute remains constant for any item through updates to the order.
Deletion of items from an order never changes the lineNumber of remaining items. New
items have higher numbers than those previously included in the order. A change to
an existing item (an increased quantity, for example) does not affect the lineNumber of
that item.

The following example shows a more complicated ItemOut.

<ItemOut quantity="2" lineNumber="1"
equestedDeliveryDate="1999-03-12">
<ItemID>

<SupplierPartID>1233244</SupplierPartID>
<SupplierPartAuxiliaryID>ABC</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">1.34</Money>

</UnitPrice>
<Description xml:lang="en">hello</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="SPSC">12345</Classification>
<ManufacturerPartID>234</ManufacturerPartID>
<ManufacturerName xml:lang="en">foobar</ManufacturerName>
<URL>www.bar.com</URL>

</ItemDetail>
<ShipTo>

<Address>
<Name xml:lang="en">Acme Corporation</Name>
<PostalAddress name="Headquarters">

<Street>123 Anystreet</Street>
<City>Sunnyvale</City>
<State>CA</State>
<PostalCode>90489</PostalCode>
<Country isoCountryCode="US">USA</Country>

</PostalAddress>
</Address>

</ShipTo>
<Shipping>

<Money currency="USD">1.34</Money>
<Description xml:lang="en-US">FedEx 2-day</Description>

</Shipping>
<Tax>

<Money currency="USD">1.34</Money>
<Description xml:lang="en">foo</Description>

</Tax>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="G/L Account" id="23456"

description="Entertainment"/>

Order Definitions Appendix A cXML Language Specification

72 cXML User’s Guide June, 2000

<Segment type="Cost Center" id="2323"
description="Western Region Sales"/>

</Accounting>
<Charge>

<Money currency="USD">.34</Money>
</Charge>

</Distribution>
<Distribution>

<Accounting name="DistributionCharge">
<Segment type="G/L Account" id="456"

description="Travel"/>
<Segment type="Cost Center" id="23"

description="Europe Implementation"/>
</Accounting>
<Charge>

<Money currency="USD">1</Money>
</Charge>

</Distribution>
<Comments xml:lang="en-US">

Anything valid in XML can go here.
</Comments>

</ItemOut>

The ItemDetail element allows additional data to be sent to suppliers instead of just the
unique identifier for the item represented by the ItemID.

The ShipTo, Shipping, Tax, Contact, Comments and Extrinsic elements (some nested within
ItemDetail) are identical to the ones that can be in the OrderRequestHeader. These
elements allow per-item data such as shipping, shipping type, and associated cost to
be represented. Use these elements either as the OrderRequestHeader level, or at the
ItemOut level, but not at both levels.

Distribution

Distribution divide the cost of an item among multiple parties. Suppliers return the
Distribution element on invoices to facilitate the buyer’s reconciliation process.

Accounting

The Accounting element groups Segments to identify who is charged.

Accounting has the following attribute:

name The name for this accounting combination.

cXML User’s Guide 73

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Punchout Transaction

Segment has the following attributes:

Charge

This element specifies the amount to be charged to the entity represented by the
Accounting element.

Response to an OrderRequest

This is the response part of the synchronous Request-Response transaction. The
following example shows a Response to an OrderRequest document:

<cXML version="1.1.007" payloadID="9949494" xml:lang="en"
timestamp="1999-03-12T18:39:09-08:00">

<Response>
<Status code="200" text="OK"/>

</Response>
</cXML>

As shown above, this Response is straightforward. In this case, there is no actual
element named “OrderResponse”, because the only data that needs to be sent back to
the requestor is the Status part of the Response.

The Response tells the requestor its OrderRequest was successfully parsed and acted on
by the remote part of HTTP connection. It does not communicate order-level
acknowledgement such as which items can be shipped, or which need to be
backordered.

Punchout Transaction

The punchout message definitions are request/response messages that are carried
inside the Request and Response elements. All of the following messages must be
implemented by suppliers to support punchout.

type An identifying name for this Segment with respect to the others
in the Accounting element.

id The unique identifier within this Segment type. This value might
be the actual account code if the type were “Cost Center”.

Punchout Transaction Appendix A cXML Language Specification

74 cXML User’s Guide June, 2000

PunchOutSetupRequest

PunchOutSetupRequest and PunchOutSetupResponse are the request/response pair used to
set up a punchout session to a remote system. The client uses them to identify the
procurement application, send setup information, and receive a response indicating
where to go to initiate an HTML browsing session on the remote Website.

A PunchOutSetupRequest element is carried within the Request element. The following
example shows a PunchOutSetupRequest.

<PunchOutSetupRequest operation="create">
<BuyerCookie>34234234ADFSDF234234</BuyerCookie>
<Extrinsic name="department">Marketing</Extrinsic>
<BrowserFormPost>

<URL>http://orms.acme.com:1616/punchoutexit</URL>
</BrowserFormPost>
<SelectedItem>

<ItemID>
<SupplierPartID>54543</SupplierPartID>

</ItemID>
</SelectedItem>
<SupplierSetup>

<URL>http://workchairs.com/cxml</URL>
</SupplierSetup>

</PunchOutSetupRequest>

PunchOutSetupRequest has the following attribute:

This element also contains the following elements: BuyerCookie, Extrinsic,
BrowserFormPost, Contact, ShipTo, SelectedItem, SupplierSetup and an ItemOut list. Only the
BuyerCookie element is required. The structure of Extrinsic, Contact and ShipTo elements is
discussed in more detail in “OrderRequestHeader” on page 65. The ItemOut element is
discussed in “ItemOut” on page 70. In this context (outside of an OrderRequest), the
Distribution and Comments elements and lineNumber, requisitionID, and requestedDeliveryDate
attributes of an ItemOut add little or no value and should not be included. Because
punchout sessions take place before ordering, this information is not relevant within a
PunchOutSetupRequest.

An ItemOut list describes an existing shopping cart (items from a previous punchout
session). The inspect operation initiates a read-only punchout session (enforced by
both the client and the server) to view details about the listed items. The edit operation
also starts from the previous shopping cart (described using the ItemOut list), but

operation Specifies the type of PunchOutSetupRequest: “create”, “inspect”,
or “edit”.

cXML User’s Guide 75

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Punchout Transaction

allows changes. Support for the edit operation implies inspect support (see
“PunchOutOrderMessageHeader” on page 78 and “Empty Shopping Carts” on
page 78).

BuyerCookie

This element transmits information that is opaque to the remote Website, but must be
returned to the originator for all subsequent punchout operations. This element allows
the procurement application to match multiple outstanding punchout requests.

BrowserFormPost

This element is the destination for the data in the PunchOutOrderMessage. It contains a
URL element whose use will be further explained in the PunchOutOrderMessage
definition. If the URL-Form-Encoded method is not being used, this element does not
have to be included.

Extrinsic

This optional element contains any additional data that the requestor wants to pass to
the external Website. This example passes the department of the user initiating the
punchout operation. The cXML specification does not define the content of Extrinsic
elements—it is something that each requestor and remote Website must agree on and
implement.

Extrinsic elements are intended to provide additional machine-readable information.
They extend the cXML protocol to support features not required by all
implementations. In this context, the new data further describes the user initiating the
punchout request.

The Extrinsic element can also appear in the OrderRequestHeader, ItemDetail, and
ContractItem elements. These contexts are described further elsewhere in this
document.

SelectedItem

This optional element indicates the items users want to punchout to purchase. It
contains a single, required ItemID. This item leads users from their local catalog to the
supplier’s Website.

This element is usually present in create operations. Procurement applications that
allow users to punchout directly from a supplier listing should leave out SelectedItem.

Punchout Transaction Appendix A cXML Language Specification

76 cXML User’s Guide June, 2000

For edit and inspect operations, SelectedItem should appear only if the user chose to
return to the supplier’s Website while viewing new information in the local catalog
rather than items in an existing requisition. In either case, the current shopping cart
must appear in the ItemOut list.

Suppliers can create their catalogs so that SelectedItem leads to store-, aisle-, or
product-level punchout. The more specific the item is in the catalog, the less
searching users have to do at the supplier’s Website.

SupplierSetup

This optional element specifies the URL to which to post the PunchOutSetupRequest.
This element is not needed if the e-commerce network hub knows the supplier’s
punchout URL.

PunchOutSetupResponse

After the remote Website has received a PunchOutSetupRequest, it responds with a
PunchOutSetupResponse, as shown below:

<PunchOutSetupResponse>
<StartPage>

<URL>
http://premier.workchairs.com/store?23423SDFSDF23

</URL>
</StartPage>

</PunchOutSetupResponse>

StartPage

This element contains a URL element that specifies the URL to pass to the browser to
initiate the punchout browsing session requested in the PunchOutSetupRequest. This
URL must contain enough state information to bind to a session context on the remote
Website, such as the requestor identity and the appropriate BuyerCookie element.

At this point, the user who initiated the PunchOutSetupRequest browses the external
Website, and selects items to be transferred back to the procurement application
through a PunchOutOrderMessage.

cXML User’s Guide 77

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Punchout Transaction

PunchOutOrderMessage

This element sends the contents of the remote shopping basket to the originator of a
PunchOutSetupMessage. It can contain much more data than the other messages because
it needs to be able to fully express the contents of any conceivable shopping basket on
the external Website. This message does not strictly follow the Request/Response
model.

The remote Website generates a PunchOutOrderMessage when the user checks out. This
message communicates the contents of the remote shopping basket to the
procurement application; for example:

<PunchOutOrderMessage>
<BuyerCookie>34234234ADFSDF234234</BuyerCookie>
<PunchOutOrderMessageHeader operationAllowed="create">

<Total>
<Money currency="USD">100.23</Money>

</Total>
</PunchOutOrderMessageHeader>
<ItemIn quantity="1">

<ItemID>
<SupplierPartID>1234</SupplierPartID>
<SupplierPartAuxiliaryID>

additional data about this item
</SupplierPartAuxiliaryID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">10.23</Money>

</UnitPrice>
<Description xml:lang="en">

Learn ASP in a Week!
</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="SPSC">12345</Classification>

</ItemDetail>
</ItemIn>

</PunchOutOrderMessage>

The following sections discuss these elements.

BuyerCookie

This element is the same element that was passed in the original PunchOutSetupRequest.
It must be returned here to allow the procurement application to match the
PunchOutOrderMessage with an earlier PunchOutSetupRequest.

Punchout Transaction Appendix A cXML Language Specification

78 cXML User’s Guide June, 2000

PunchOutOrderMessageHeader

This element contains information about the entire shopping basket contents being
transferred. The only required element is Total, which is the overall cost of the items
being added to the requisition. Additional elements that are allowed are Shipping and
Tax, which are the amount and description of any shipping or tax charges computed on
the remote Website. ShipTo is also optional, and it specifies the Ship-To addressing
information the user selected on the remote site or that was passed in the original
PunchOutSetupRequest. All monetary amounts are in a Money element that always
specifies currency in a standardized format.

PunchOutOrderMessageHeader has the following attribute:

This attribute controls whether the user can initiate later PunchOutSetupRequest
transactions containing data from this PunchOutOrderMessage. If
operationAllowed="create", only a later OrderRequest can contain these items. Otherwise,
the procurement application can inspect or edit the shopping cart later (initiating
subsequent PunchOutSetupRequest transactions with the appropriate operations and the
ItemID elements corresponding to the ItemIn list returned in this PunchOutOrderMessage).
Support for edit implies support for inspect. The procurement application can always
use the items in a subsequent OrderRequest.

Empty Shopping Carts

The PunchOutOrderMessage can contain a list of items corresponding to a shopping cart
on the supplier Website. It always indicates the end of the interactive punchout
session. The following paragraphs detail a few cases without a list of items in the
PunchOutOrderMessage. These messages allow clients to resume immediately when the
user leaves the supplier Website.

If the operation in the original PunchOutSetupRequest was inspect, the item list of the
PunchOutOrderMessage must be ignored by the procurement application. The supplier
site should return no ItemIn elements in this case. If a PunchOutOrderMessage contains no
ItemIn elements and the operation was create, no items should be added to the
requisition. The supplier site or the user has cancelled the punchout session without
creating a shopping cart. If the operation was edit and the PunchOutOrderMessage
contains no ItemIn elements, existing items from this punchout session must be deleted
from the requisition in the procurement application.

The Status code “204/No Content” indicates the end of a session without change to
the shopping cart. Again, the PunchOutOrderMessage (which is always needed for
the BuyerCookie) should not contain ItemIn elements. This code would be handled

operationAllowed Specifies the PunchOutSetupRequest operations allowed: create,
inspect, or edit.

cXML User’s Guide 79

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Punchout Transaction

identically to the other “empty” cases detailed above unless the operation was edit. In
that case, the user cancelled the session without making any change and no change
should be made to the requisition in the procurement application.

ItemIn

This element adds an item from a shopping basket to a requisition in the procurement
application. It can contain a variety of elements, only two of which are required:
ItemID and ItemDetail.

ItemIn has the following attributes:

The optional elements are ShipTo, Shipping, and Tax, which are the same elements as
those specified in PunchOutOrderMessage, above.

With the exception of the Distribution and Comments elements and requisitionID and
requestedDeliveryDate attributes available in the ItemOut element, the ItemIn and ItemOut
structures match one-to-one. The originating buying system can convert directly
between ItemIn and ItemOut lists when initiating an inspect or edit operation. Suppliers
can convert one to the other (dropping the listed extensions available in the ItemOut
element) when executing an edit operation. The originating buying system can
perform the direct conversion and add additional shipping and distribution
information and comments when initiating an OrderRequest transaction. ItemDetail data
(with the possible exception of Extrinsic elements) contained within ItemIn elements
must not be removed when converting from ItemIn to ItemOut.

ItemID

This element uniquely identifies the item to the remote Website. It is the only element
required to be returned to the remote Website to re-identity the item being transferred.

ItemID contains two elements: SupplierPartID and SupplierPartAuxiliaryID. Only
SupplierPartID is required. SupplierPartAuxiliaryID helps the remote Website transport
complex configuration or bill-of-goods information to re-identify the item when it is
presented to the remote Website in the future.

quantity

The number of items selected by the user on the remote
Website. Because the supplier site can enforce rules for partial
units, the protocol allows fractional quantities. Should never be
negative.

lineNumber
(optional)

The position of this item within an order. Because punchout
sessions normally take place prior to ordering and the server
cannot control placement of items within an order in any case,
this attribute is not relevant within a PunchOutOrderMessage.

Punchout Transaction Appendix A cXML Language Specification

80 cXML User’s Guide June, 2000

If SupplierPartAuxiliaryID contains special characters (for example, if it contains
additional XML elements not defined in the cXML protocol), they must be escaped
properly. Due to the necessity to pass SupplierPartAuxiliaryID information through
applications and back to the originating supplier, an internal subset containing any
additional XML elements is insufficient.

ItemDetail

This element contains descriptive information about the item that procurement
applications present to users. The contents of an ItemDetail element can be quite
complex, but the minimum requirements are simple: UnitPrice, Description,
UnitOfMeasure, and Classification.

In the context of an ItemIn element, the Extrinsic elements contained within an ItemDetail
function identically to those found within an Index (specifically an IndexItemAdd).

Description

This element describes the item in a textual form. Because this text might exceed the
limits of a short table of line items (or other constrained user interface) and random
truncations could occur, the Description element contains an optional ShortName
element. If provided, clients should present the ShortName instead of a truncation of
the Description text in any restricted fields. Clients must continue to truncate the
Description text if no ShortName is provided.

For example:

<Description xml:lang="en-US">
<ShortName>Big Computer</ShortName>
This wonder contains three really big disks, four CD-Rom drives, two Zip drives, an

ethernet card or two, much more memory than you could ever use, four CPUs on two
motherboards. We’ll throw in two monitors, a keyboard and the cheapest mouse we can
find lying around.
</Description>

might appear as “Big Computer” where space is tight, and “Big Computer: This
wonder … lying around.” (or as two separate but complete fields) where there is
space to display more text.

cXML User’s Guide 81

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Later Status Changes

Later Status Changes

After the OrderRequest transaction has completed, suppliers and intermediate servers
might need to communicate additional information back to the buying system. The
transactions described in this section are used for that purpose. These transactions
share some common semantics and elements.

Like the response to an OrderRequest (see “Response to an OrderRequest” on page 73),
none of these transactions includes a specific Response element. Instead, the returned
document contains a nearly empty Response (only a Status). Each returned document
has the form:

<cXML version="1.1.007" payloadID="9949494@supplier.com"
timestamp="2000-01-12T18:39:09-08:00" xml:lang="en-US">

<Response>
<Status code="200" text="OK"/>

</Response>
</cXML>

The returned code is “200” only if the operation completed successfully.

DocumentReference

The DocumentReference element contains enough information to associate the update
request with a particular document. It repeats a required attribute of the earlier
document and adds one optional identifier generated by the supplier. For example:

<DocumentReference
payloadID="0c300508b7863dcclb_14999"/>

DocumentReference contains no elements, but has the following attribute:

payloadID

A unique number with respect to space and time that is used
for logging purposes to identify documents. This value should
not change in the case of retry attempts.

The recommended implementation is:

datetime.process id.random number@hostname

Taken directly from the cXML element of the OrderRequest
document.

Later Status Changes Appendix A cXML Language Specification

82 cXML User’s Guide June, 2000

StatusUpdateRequest

This transaction informs an earlier node about changes in the processing status of an
order. One change is of particular significance: When an intermediate hub
successfully transmits an OrderRequest onward, it can inform the original sender or a
previous hub about that success. Transitions through various queues and processing
steps at a supplier or hub might also be significant to the buyer.

This request updates the processing status of a single OrderRequest document. For
example:

<cXML version="1.1.007" xml:lang="en-US"
payloadID="0c30050@supplier.com"
timestamp="2000-01-08T23:00:06-08:00">

<Header>
Routing, identification and authentication information.

</Header>
<Request>

<StatusUpdateRequest>
<DocumentReference

payloadID="0c300508b7863dcclb_14999"/>
<Status code="200" text="OK" xml:lang="en-US">Forwarded

to supplier</Status>
</StatusUpdateRequest>

</Request>
</cXML>

This request contains only an DocumentReference and a Status element. Both are
required. The Status can communicate a later transport error encountered by an
intermediate hub. The semantics of this element are identical to a Status that might
have been returned in the initial HTTP response to an OrderRequest document.

The 200/OK code is especially important when documents are stored and forwarded.
This code indicates that a supplier has begun processing the OrderRequest or a hub has
forwarded the document. The recipient should expect no further StatusUpdateRequest
documents after 200/OK arrives.

Suppliers and hubs utilizing the StatusUpdate transaction must return code
201/Accepted when an OrderRequest is queued for later processing. After it sends
200/OK (in the immediate Response to an OrderRequest or a later StatusUpdateRequest),
the server should send no further StatusUpdate transactions for that order. Errors later
in processing might lead to exceptions to this rule.

cXML User’s Guide 83

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Catalog Definitions

Catalog Definitions

The cXML catalog definitions consist of three main elements: Supplier, Index, and
Contract. All three elements describe data intended for persistent or cached use within
a hub or a buying organization’s procurement system.

• Supplier—Contains basic data about the supplier such as address, contact, and
ordering information.

• Index—Describes data about the supplier’s inventory of goods and services, such as
description, part numbers, and classification codes.

• Contract—Describes data about flexible aspects of the inventory negotiated between
the buyer and supplier, such as price.

Note that Index uses several sub-elements to describe line items in suppliers’
inventories. Suppliers can send either price information for caching within buyers’
systems, or punchout information to enable buyers to punch-out to remote Websites
for pricing and other information.

Catalog Definitions Appendix A cXML Language Specification

84 cXML User’s Guide June, 2000

Supplier

The Supplier element encapsulates a named supplier of goods or services. It must have
a Name element and a SupplierID element. It additionally describes optional address and
ordering information for the supplier:

Supplier has the following attributes:

The following example shows an outline of the Supplier element:

<Supplier>
<SupplierID domain="InternalSupplierID">29</SupplierID>
<SupplierID domain="DUNS">76554545</SupplierID>
<SupplierLocation>

<Address>

corporateURL
(optional)

URL for supplier’s Website.

storeFrontURL
(optional)

URL for Website for shopping or browsing.

Name

xml:lang

SupplierID

domain
value

Address

code

Supplier

corporateURL
storeFrontURL

+
*

Contact

SupplierLocation

OrderMethods

OrderMethodOrderTarget

Phone|Email|Fax|URL

OrderProtocol

+ ?

?

cXML User’s Guide 85

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Catalog Definitions

<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

…
</PostalAddress>

<Email>bobw@workchairs.com</Email>
<Phone name="Office">

…
</Phone>
<Fax name="Order">

…
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>
</Address>
<OrderMethods>

<OrderMethod>
<OrderTarget>

<URL>http://www.workchairs.com/cxmlorders</URL>
</OrderTarget>

</OrderMethod>
<Contact>

<Name xml:lang="en-US">Mr. Smart E. Pants</Name>
<Email>sepants@workchairs.com</Email>
<Phone name="Office">

 …
</Phone>

</Contact>
</OrderMethods>

</SupplierLocation>
</Supplier>

SupplierLocation

Some suppliers conduct business from more than one location. A SupplierLocation
element can be used for each location. This element also encapsulates how that
location does business, or the ways that it can accept orders. A SupplierLocation element
contains an Address and a set of OrderMethods.

OrderMethods and OrderMethod

The OrderMethods element is a grouping of one or more OrderMethod elements for the
given SupplierLocation element. The position of OrderMethods in the list is significant—
the first element is the preferred ordering method, the second element is the next
priority, and so on in decreasing order of preference.

OrderMethod encapsulates ordering information in the form of an order target (such as
phone, fax, or URL) and an optional protocol to further clarify the ordering
expectations at the given target; for example, “cxml” for a URL target.

Catalog Definitions Appendix A cXML Language Specification

86 cXML User’s Guide June, 2000

Index

This element is the root element for updating catalogs within buying organization’s
procurement systems.

An Index element is associated with a single supplier. The Index element allows for a
list of supplier IDs, where each ID is considered a synonym for that supplier.

The Index contains one or more IndexItem elements as well as an optional set of
SearchGroup elements for defining parametric search data for items. The IndexItem
element contains elements that add or delete from the buying organization’s cached
catalog. The following example shows an outline of an Index element:

<Index>
<SupplierID> … </SupplierID>
...
<IndexItem>

<IndexItemAdd>
<IndexItemDetail>

…
</IndexItemDetail>

</IndexItemAdd>
…
<IndexItemDelete>

…
</IndexItemDelete>
…
<IndexItemPunchout>

…
</IndexItemPunchout>

</IndexItem>
</Index>

IndexItem, IndexItemAdd, IndexItemDelete and IndexItemPunchout

The IndexItem element is a container for the list of items in an index. It contains three
types of elements:

• IndexItemAdd—Inserts a new item or updates an existing item in the index. It
contains an ItemID element, a ItemDetail element, and a IndexItemDetail element.

• IndexItemDelete—Removes an item from the index. It contains an ItemID element
identifying the item.

• IndexItemPunchout—Inserts an item for initiating puchout to the supplier's Website. It
contains a PunchoutDetail element and an ItemID element. It is similar to an
IndexItemAdd element except that it does not require price information. Buyers
acquire item details in real-time from the supplier’s Website.

cXML User’s Guide 87

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Catalog Definitions

ItemID

The ItemID element uniquely identifies a supplier’s items. It contains a SupplierPartID
element and an optional SupplierPartAuxiliaryID element.

SupplierPartAuxiliaryID

If SupplierPartID does not uniquely identify the item, the supplier should use
SupplierPartAuxiliaryID to specify an “auxiliary” key that identifies the part uniquely
when combined with the SupplierID and SupplierPartID. For example, a supplier might
use the same SupplierPartID for an item, but have a different price for units of “EA” and
“BOX”. In this case, a reasonable SupplierPartAuxiliaryID for the two items might be
“EA” and “BOX.”

SupplierPartAuxiliaryID could also be used as a supplier cookie, enabling the supplier to
refer to complex configuration or part data. It could contain all the data necessary for
the supplier to reconstruct what the item in question is in their computer system (a
basket or cookie of data that makes sense only to the supplier). For more information,
see “Buyer and Supplier Cookies” on page 36.

ItemDetail

ItemDetail contains detailed information about an item, or all the data that a user might
want to see about an item beyond the essentials represented in the ItemID. It must
contain a UnitPrice, a UnitOfMeasure, one or more Description elements, and a Classification,
and it can optionally contain a ManufacturerPartID, a ManufacturerName, a URL, and any
number of Extrinsic elements. For more information, see “ItemDetail” on page 80.

In the context of an IndexItemAdd, Extrinsic elements extend information about a
particular item. These extensions should not be transmitted to a supplier within an
OrderRequest, because the supplier can retrieve the same data using the unique ItemID.

IndexItemDetail

The IndexItemDetail element contains index-specific elements that define additional
aspects of an item, such as LeadTime, ExpirationDate, EffectiveDate, SearchGroupData, or
TerritoryAvailable.

PunchoutDetail

PunchoutDetail is similar to ItemDetail, except it requires only one or more Description
elements and a Classification. It can also contain URL, ManufacturerName,
ManufacturerPartID, ExpirationDate, EffectiveDate, SearchGroupData, TerritoryAvailable, and
Extrinsic elements. It does not contain pricing, lead time, or unit of measure
information.

Catalog Definitions Appendix A cXML Language Specification

88 cXML User’s Guide June, 2000

Contract

A Contract element represents a contract between a supplier and buyer for goods or
services described in the supplier’s index. It allows the supplier to “overlay” item
attributes (such as price) in the index with values negotiated with the buyer. It further
allows suppliers and buyers to segment these overlays based on an agreed-upon
“segment key”, meaningful within a buying organization, such as the name of a plant
or a cost center.

Contract has the following attributes:

Contract contains one or more ItemSegment elements, for example:

<Contract effectiveDate="2000-01-03T18:39:09-08:00"
expirationDate="2000-07-03T18:39:09-08:00">

<SupplierID domain="InternalSupplierID">29</SupplierID>
<ItemSegment segmentKey=Plant12>

<ContractItem>
<ItemID>

 <SupplierPartID>pn12345</SupplierPartID>
</ItemID>
<UnitPrice>

<Money currency=USD>40.00</Money>
</UnitPrice>

</ContractItem>
…

</ItemSegment>
</Contract>

ItemSegment

The ItemSegment element is a container for a list of ContractItem elements for a given
“segment,” where a segment represents an arbitrary partitioning of contract items
based on a segment key agreed upon between supplier and buyer.

ItemSegment has the following attribute:

effectiveDate Effective date and time of the contract, in ISO 8601 format.

expirationDate Expiration date and time of the contract, in ISO 8601 format.

segmentKey
(optional)

Agreed-upon string used to segment custom prices.

cXML User’s Guide 89

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Subscription Management Definitions

ContractItem

A contract item element is a particular item overlay for an index item. It contains an
ItemID that uniquely identifies the index item within the procurement system to
overlay. It can contain any number of Extrinsic elements containing the overlaid value
for the named index item attribute.

Subscription Management Definitions

Intermediaries, such as e-commerce network hubs, can manage the suppliers and
supplier catalogs used by buying organizations’ procurement systems. These
intermediaries can provide direct links between procurement systems and supplier
systems. This section contains element definitions for managing supplier data and
catalog contents. These definitions build on many of the previous definitions for
cXML request/responses, one-way messages, and catalog definitions.

Supplier Data

The definitions for supplier data management consist mainly of the elements
SupplierListRequest, SupplierListResponse, SupplierDataRequest, SupplierDataResponse, and
SupplierChangeMessage. These elements are described below with examples where the
intermediary is Ariba Network.

SupplierListRequest

SupplierListRequest requests a list of the suppliers with whom the buyer has established
trading relationships.

<Request>
<SupplierListRequest/>

</Request>

SupplierListResponse

SupplierListResponse lists the suppliers with whom the buyer has established trading
relationships.

<Response>
<Status code="200" text="OK"/>
<SupplierListResponse>

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>

Subscription Management Definitions Appendix A cXML Language Specification

90 cXML User’s Guide June, 2000

<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>

</Supplier>
<Supplier corporateURL=http://www.computersRus.com

storeFrontURL="http://www.computersRus.com">
<Name xml:lang="en-US">Computers R us</Name>
<Comments xml:lang="en-US">another cool company</Comments>
<SupplierID domain="DUNS">123456789</SupplierID>

</Supplier>
</SupplierListResponse>

</Response>

SupplierDataRequest

SupplierDataRequest requests data about a supplier.

<Request>
<SupplierDataRequest>

<SupplierID domain="DUNS">123456789</SupplierID>
</SupplierDataRequest>

</Request>

SupplierDataResponse

SupplierDataResponse contains data about a supplier.

<Response>
<Status code="200" text="OK"/>
<SupplierDataResponse>

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>
<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>
<SupplierLocation>

<Address>
<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

<DeliverTo>Bob A. Worker</DeliverTo>
<Street>123 Front Street</Street>
<City>Toosunny</City>
<State>CA</State>
<PostalCode>95000</PostalCode>
<Country isoCountryCode="US">USA</Country>

 </PostalAddress>
<Email>bobw@workchairs.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode

cXML User’s Guide 91

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Subscription Management Definitions

isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>
</Phone>
<Fax name="Order">

<TelephoneNumber>
<CountryCode

isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>408</AreaOrCityCode>
<Number>5551234</Number>

</TelephoneNumber>
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>

</Address>
<OrderMethods>

<OrderMethod>
<OrderTarget>

<URL>http://www.workchairs.com/cxmlorder</URL>
</OrderTarget>
<OrderProtocol>cXML</OrderProtocol>

</OrderMethod>
</OrderMethods>

</SupplierLocation>
</Supplier>

</SupplierDataResponse>
</Response>

SupplierChangeMessage

This element is for notification of changes to supplier data.

<Message>
<SupplierChangeMessage type="new">

<Supplier corporateURL=http://www.workchairs.com
storeFrontURL="http://www.workchairs.com">

<Name xml:lang="en-US">Workchairs, Inc.</Name>
<Comments xml:lang="en-US">this is a cool company</Comments>
<SupplierID domain="DUNS">123456</SupplierID>
<SupplierLocation>

<Address>
<Name xml:lang="en-US">Main Office</Name>
<PostalAddress>

<DeliverTo>Bob A. Worker</DeliverTo>
<Street>123 Front Street</Street>
<City>Toosunny</City>
<State>CA</State>
<PostalCode>95000</PostalCode>
<Country isoCountryCode="US">USA</Country>

Subscription Management Definitions Appendix A cXML Language Specification

92 cXML User’s Guide June, 2000

</PostalAddress>
<Email>bobw@workchairs.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode
isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>
</Phone>
<Fax name="Order">

<TelephoneNumber>
<CountryCode
isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>408</AreaOrCityCode>
<Number>5551234</Number>

</TelephoneNumber>
</Fax>
<URL>http://www.workchairs.com/Support.htm</URL>

</Address>
<OrderMethods>

<OrderMethod>
<OrderTarget>

<URL>http://www.workchairs.com/cxmlorder</URL>
</OrderTarget>
<OrderProtocol>cXML</OrderProtocol>

</OrderMethod>
</OrderMethods>

</SupplierLocation>
</Supplier>

</SupplierChangeMessage>
</Message>

cXML User’s Guide 93

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Subscription Management Definitions

Catalog Subscriptions

The definitions for catalog-subscription management are described below. The
examples show the intermediary as Ariba Network.

Subscription

This element captures metadata about a single catalog subscription. Its sub-elements
include:

• InternalID – a unique ID internal to the intermediary

• Name – the name of the subscription

• ChangeTime – the date and time when anything about the subscription last changed

• SupplierID – the ID of the supplier who is supplying the catalog

• Format – the format of the catalog

• Description – a description of the catalog

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software</Description>

</Subscription>

SubscriptionListRequest

This element requests the buyer’s current list of catalog subscriptions.

<Request>
<SubscriptionListRequest/>

</Request>

SubscriptionListResponse

This element lists the buyer’s current list of catalog subscriptions.

<Response>
<Status code="200" text="OK"/>
<SubscriptionListResponse>

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>

Subscription Management Definitions Appendix A cXML Language Specification

94 cXML User’s Guide June, 2000

<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

</Subscription>
<Subscription>

<InternalID>1235</InternalID>
<Name xml:lang="en-US">Q2 Software Prices</Name>
<Changetime>1999-03-12T18:15:00-08:00</Changetime>
<SupplierID domain="DUNS">555555555</SupplierID>
<Format version="2.1">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

</Subscription>
</SubscriptionListResponse>

</Response>

SubscriptionContentRequest

This element requests the contents of a subscribed catalog. The request includes the
InternalID and SupplierID for the catalog.

<Request>
<SubscriptionContentRequest>

<InternalID>1234</InternalID>
<SupplierID domain="DUNS">123456789</SupplierID>

</SubscriptionContentRequest>
</Request>

SubscriptionContentResponse

This element contains the contents of a catalog. The catalog format can be either CIF
(Catalog Interchange Format) or cXML. If it is CIF, it is encoded using base64 and
included as the content of a CIFContent element. If it is cXML, the Index and Contract
elements are directly included.

<Response>
<Status code="200" text="OK"/>
<SubscriptionContentResponse>

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="3.0">CIF</Format>
<Description xml:lang="en-US">The best prices for software
</Description>

cXML User’s Guide 95

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Subscription Management Definitions

</Subscription>
<SubscriptionContent filename="foobar.cif">

<CIFContent>
<!-- base64 encoded data -->
ABCDBBDBDBDBDB

</CIFContent>
</SubscriptionContent>

</SubscriptionContentResponse>
</Response>

SubscriptionChangeMessage

This element signals the buying organization’s procurement system that a subscribed
catalog has changed.

<Message>
<SubscriptionChangeMessage type="new">

<Subscription>
<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00</Changetime>
<SupplierID domain="DUNS">123456789</SupplierID>
<Format version="2.1">CIF</Format>

</Subscription>
</SubscriptionChangeMessage>

</Message>

SubscriptionChangeMessage has the following attribute:

type The type of the change: new, delete, or update.

Message Retrieval Definitions Appendix A cXML Language Specification

96 cXML User’s Guide June, 2000

Message Retrieval Definitions

Some buying organizations do not have HTTP entry points for receiving cXML
messages from outside their corporate firewalls. The cXML specification allows for
these environments.

This section introduces definitions that allow source systems to queue messages when
targets are unable to directly accept HTTP posts. Targets instead pull messages at
their convenience.

GetPendingRequest

This element pulls a set of messages waiting for the requester. The MessageType
element and the lastReceivedTimestamp and maxMessages attributes control the type and
count of the fetched messages.

Upon receiving the request, the receiver returns the oldest messages, of the specified
types, with timestamps equal to or later than the specified timestamp. If there are
multiple messages meeting this criterion, multiple messages can be returned, subject
to the maxMessages attribute. The queuing system discards all pending messages of the
specified message types with timestamps earlier than the specified timestamp.

<Request>
<GetPendingRequest lastReceivedTimestamp="1999-03-12T18:39:09-08:00"

maxMessages="5">
<MessageType>SubscriptionChangedMessage</MessageType>

</GetPendingRequest>
</Request>

GetPendingResponse

This element contains one or more messages waiting for the requester.

<Response>
<Status code="200" text="OK"/>
<GetPendingResponse>

<cXML version="1.1.007" xml:lang="en-US"
payloadID="456778@ariba.com"
timestamp="1999-03-12T18:39:09-08:00">

lastReceivedTimestamp
(optional)

The timestamp of the most recent message received.

maxMessages
(optional)

Maximum number of messages in a single response
that the requester can handle.

cXML User’s Guide 97

A
 c

X
M

L
 L

an
g

ua
ge

S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

ge

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

A
 c

X
M

L
 L

an
g

ua
g

e
S

p
ec

if
ic

at
io

n
A

 c
X

M
L

 L
an

g
ua

g
e

S
p

ec
if

ic
at

io
n

Appendix A cXML Language Specification Message Retrieval Definitions

<Header>
<From>

<Credential domain="AribaNetworkUserId">
<Identity>admin@ariba.com</Identity>

</Credential>
</From>
<To>

<Credential domain="AribaNetworkUserId">
<Identity>admin@acme.com</Identity>

</Credential>
</To>
<Sender>

<Credential domain="AribaNetworkUserId">
<Identity>admin@ariba.com</Identity>

</Credential>
<UserAgent>Ariba.com</UserAgent>
</Sender>

</Header>
<Message>

<SubscriptionChangeMessage type="new">
<Subscription>

<InternalID>1234</InternalID>
<Name xml:lang="en-US">Q2 Prices</Name>
<Changetime>1999-03-12T18:39:09-08:00
</Changetime>
<SupplierID domain="DUNS">123456789
</SupplierID>
<Format version="2.1">CIF</Format>

</Subscription>
</SubscriptionChangeMessage>

</Message>
</cXML>

</GetPendingResponse>
</Response>

Message Retrieval Definitions Appendix A cXML Language Specification

98 cXML User’s Guide June, 2000

cXML User’s Guide 99

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B
New Features in cXML 1.1

cXML 1.1 contains the following categories of new features:

• General Changes to cXML

• Changes to Extrinsics

• Punchout Transaction Improvements

• New Purchase Order Features

• New Purchase Order Status Transaction

For in-depth discussions of any element or attribute mentioned here, see Appendix A,
“cXML Language Specification.”

General Changes to cXML

The following changes affect large areas of the cXML language. These improvements
make cXML easier to use internationally, and address cXML version compatibility. In
addition, a new Profile transaction allows cXML clients to query cXML server
capabilities.

Improved Multi-Language Support

For consistency and better multi-language support, the cXML, Status and
ManufacturerName elements now have an optional xml:lang attribute.

Example:

<Status
xml:lang="en-US"
code="200
text="OK">

</Status>

For more information:

“Status” on page 54.

General Changes to cXML Appendix B New Features in cXML 1.1

100 cXML User’s Guide June, 2000

This attribute specifies the language that cXML clients should use in responses, and
that Punchout Websites should display to users.

Centralized DTDs

Previously, there was no declared central location for cXML DTDs, so cXML parsers
could not automatically retrieve them. Now, DTDs for all versions of cXML are
available at consistent locations on cxml.org.

For cXML DTDs, go to:

http://xml.cXML.org/schemas/cXML/<version>/cXML.dtd

where <version> is the full cXML version number, such as 1.1.007.

For best performance, cXML clients should not fetch DTDs each time they parse
cXML documents. Instead, they should cache them locally. After populating a URL
below //xml.cxml.org/schemas/cXML, there is no need to change that location. DTDs
will never be changed in-place; instead, new branches will be added.

New Profile Transaction

A new Profile transaction communicates basic information about cXML servers. This
transaction consists of two new documents named ProfileRequest and ProfileResponse.
This transaction retrieves server capabilities, including supported cXML version,
supported transactions, and options to those transactions.

Note: All cXML 1.1 servers must support this transaction.

Clients can also use the Profile transaction to “ping” servers to verify that they are
available.

ProfileRequest

The ProfileRequest document has no content. It is simply routed to the appropriate
cXML server using the Header credentials.

<cXML version="1.1.007" payloadID="9949494"
xml:lang="en-US" timestamp="2000-03-12T18:39:09-08:00">
<Header>

Routing, identification, and authentication information.
</Header>
<ProfileRequest />

</cXML>

For more information:

“Validation Against
DTDs” on page 7.

For more information:

“Profile Transaction”
on page 63

cXML User’s Guide 101

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B New Features in cXML 1.1 Changes to Extrinsics

The server responds with a ProfileResponse document, described below.

ProfileResponse

The ProfileResponse document lists transactions supported by the cXML server, their
locations, and any named options with a string value.

<ProfileResponse effectiveDate="2000-01-01T05:24:29-08:00">
<Transaction requestName="OrderRequest">

<URL>http://workchairs.com/cgi/orders.cgi</URL>
</Transaction>
<Transaction requestName="PunchOutSetupRequest">

<URL>http://workchairs.com/cgi/PunchOut.cgi</URL>
</Transaction>

</ProfileResponse>

New Status Codes

The cXML 1.1 specification includes new transaction status codes for more accurate
client-server communication. In addition, the specification contains better
descriptions of existing HTTP and cXML status codes.

New type Attribute for Marketplace Members

The Credential element has a new type attribute, which specifies whether the sender or
receiver is a member of a marketplace. There can be multiple marketplaces, and each
marketplace can have different requirements for credentials.

The new type attribute has one possible value: marketplace. Use it to differentiate
credentials for marketplace members from credentials for regular buyer or supplier
companies. Credential elements without a type attribute identify companies that are not
associated with a marketplace.

Requests to or from a marketplace must identify both the marketplace and the
member company in To or From Credential elements.

Changes to Extrinsics

cXML 1.1 introduces additional elements and attributes for data previously contained
in Extrinsic elements. These additions move information that was previously sent using
Extrinsic into the base specification.

For more information:

“Status” on page 54

For more information:

“Credential” on
page 53

Changes to Extrinsics Appendix B New Features in cXML 1.1

102 cXML User’s Guide June, 2000

cXML 1.1 also introduces support for Extrinsic at the header level.

New Contact Element

The OrderRequestHeader, PunchOutSetupRequest, and ItemOut elements can now contain
optional Contact elements, which list a person or group to contact for additional
information.

<ItemOut quantity="1">
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">134.00</Money>

</UnitPrice>
<Description xml:lang="en">

<ShortName>Office Chair</ShortName>
Black leather, with adjustable arms, adjustable height and back angle.

</Description>
<UnitOfMeasure>EA</UnitOfMeasure>
<Classification domain="UNSPSC">12345</Classification>

</ItemDetail>
<Contact role="customerService">

<Address>
<Name xml:lang="en-US">Joe Bob Emmet</Name>
<Email>joebob@workchairs.com</Email>
<Phone name="Office">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>800</AreaOrCityCode>
<Number>5551212</Number>

</TelephoneNumber>
</Phone>
<Fax name="Order">

<TelephoneNumber>
<CountryCode isoCountryCode="US">1</CountryCode>
<AreaOrCityCode>408</AreaOrCityCode>
<Number>5551234</Number>

</TelephoneNumber>
</Fax>

</Address>
</Contact>

</ItemOut>

The role attribute specifies the position or title of the contact person. Allowed roles are
endUser, administrator, purchasingAgent, technicalSupport, customerService or sales.

For more information:

“Contact” on page 68

cXML User’s Guide 103

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B New Features in cXML 1.1 Changes to Extrinsics

requisitionID Attribute Supported

requisitionID is now fully supported. It is an optional attribute to the OrderRequest and
ItemOut elements that identifies the buyer’s requisition for a line item.

<OrderRequest>
<OrderRequestHeader

orderID="DO1234"
orderDate="2000-03-12T13:30:23+8.00"
type="new"
requisitionID="R4321">

<Total>
<Money currency="USD">12.34</Money>

</Total>
<ShipTo>
. . .
</ShipTo>

</OrderRequestHeader>
<ItemOut>
. . .
</ItemOut>

</OrderRequest>

Do not include requisitionID at the ItemOut level if you use it at the OrderRequestHeader
level.

Summary of Moved Extrinsic Information

The following table lists the changes made to commonly used Extrinsic elements.

For more information:

“OrderRequestHeader”
on page 65

Old Extrinsic Existing or new cXML element or attribute

Requested Ship Date ItemOut requestedDeliveryDate attribute

ship complete new shipComplete attribute

ReqNumber existing requisitionID attribute

Requisition # existing requisitionID attribute

Name new Contact element

Phone new Contact element

E-mailAddress new Contact element

Buyer Name new Contact element

Punchout Transaction Improvements Appendix B New Features in cXML 1.1

104 cXML User’s Guide June, 2000

Header-Level Extrinsics

Previously, purchase order Extrinsic elements could appear only at the product line-
item level. Now, they can appear anywhere within the OrderRequest document.

Use this new capability for Extrinsic data that applies to the entire purchase order.

Extrinic elements with the same name cannot appear at both the header level and the
line-item level in an OrderRequest document.

Punchout Transaction Improvements

Punchout transactions have been improved for better support of aisle-level and
product-level shopping. cXML also now supports cancelled punchout sessions.

Improved PunchOutSetupRequest

The PunchOutSetupRequest document sent by buyers has been changed to improve the
flexibility of punchout transactions. The URL specified in the PunchOutSetupRequest
has been deprecated; cXML servers will ignore this element in the future.

The new methodology uses the identity (from the Credential) of the supplier.
E-commerce network hubs receive the PunchOutSetupRequest document, read the
supplier’s ID, find the URL of the punchout Website from the supplier’s account
information, and send the PunchOutSetupRequest document to that URL. The
e-commerce network hub, not the buyer, specifies the URL of the punchout Website,
which is more flexible.

E-commerce network hubs allow suppliers to store the URLs of their punchout
Websites.

Buyer Phone new Contact element

OriginalRequester new Contact element

Requester Phone Number new Contact element

ETA existing requestedDeliveryDate attribute

Old Extrinsic Existing or new cXML element or attribute

cXML User’s Guide 105

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B New Features in cXML 1.1 Punchout Transaction Improvements

SelectedItem Element

As part of the PunchOutSetupRequest enhancement, cXML now has better support for
store-, aisle-, and product-level punchout. A new optional SelectedItem element in this
document allows suppliers to specify punchout for an entire store or any subset of
product offerings. Procurement applications can include the SelectedItem element in
PunchOutSetupRequest documents, and punchout sites can use it to determine which
products to display to users. If there is no SelectedItem, suppliers should present their
entire (store-level) product offerings.

A SelectedItem contains an ItemOut element, which contains an ItemID, for example:

<SelectedItem>
<ItemID>

<SupplierPartID>5555</SupplierPartID>
</ItemID>

</SelectedItem>

For the contents of the SelectedItem element, procurement applications use the ItemID
(SupplierPartID and SupplierPartAuxiliaryID) from the punchout index catalog. No catalog
changes are required.

Procurement applications should initially send both the new SelectedItem element and
the old punchout URL in the PunchOutSetupRequest. E-commerce network hubs use the
old URL only for suppliers that have not yet stored their punchout URL destinations.

Empty PunchOutOrderMessage

cXML now allows empty PunchOutOrderMessage documents, which allows users to end
punchout shopping sessions without picking any items. Previously, the returned
PunchOutOrderMessage had to contain at least one item.

Suppliers can implement a “Cancel” button that generates an empty
PunchOutOrderMessage document. Then, both the punchout site and the procurement
application know when a user has canceled a shopping session, and they can delete
the shopping cart, delete items from the requisition, and perform other housekeeping
tasks.

New cXML-base64 Hidden Field

The new cXML-base64 hidden field supports international documents within the FORM
POST returned by punchout sites. cXML documents containing symbols outside of
“us-ascii” should use this field instead of the cXML-urlencoded hidden field. This

For more information:

“SelectedItem” on
page 75

New Purchase Order Features Appendix B New Features in cXML 1.1

106 cXML User’s Guide June, 2000

alternative has almost identical semantics, but the entire document is base64 encoded
throughout transport and not HTML encoded to the browser, nor URL encoded to the
receiving Web server.

Base64 encoding maintains the original character encoding of a cXML document.
Although no “charset” parameter arrives with the posted information, the decoded
document (after the transfer encoding is removed) can be treated as the media type
“application/xml”. This treatment allows the receiving parser to honor any
“encoding” attribute specified in the XML declaration. For this field, and all
“application/xml” documents, the default character encoding is UTF-8.

New Purchase Order Features

cXML purchase order documents have been enhanced to support requested features.

New lineNumber Attribute

lineNumber is a new optional attribute to the ItemOut element. It specifies the location of
an item within the buyer's purchase order. It is chosen as the order is placed (so, it is
usually not relevant to punchout sessions).

<ItemOut quantity="2" lineNumber="1"
requestedDeliveryDate="2000-03-12">

<ItemID>
<SupplierPartID>11223344</SupplierPartID>

</ItemID>
<ItemDetail>
. . .
</ItemDetail>

</ItemOut>

Line numbers for items must remain constant through change orders, to identify the
change.

Purchase Order Attachments

Buyers often need to clarify purchase orders with memos, drawings, or faxes.
Procurement applications can now attach files of any type to cXML purchase orders
by using MIME (Multipurpose Internet Mail Extensions).

cXML contains only references to external MIME parts sent within one multipart
MIME envelope (with the cXML document, in an e-mail or faxed together).

For more information:

“URL-Form-
Encoding” on page 59

For more information:

“ItemOut” on page 70

cXML User’s Guide 107

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B New Features in cXML 1.1 New Purchase Order Features

A new Attachment element contains references to the attachments:

<Comments>
<Attachment><URL>cid: uniqueCID@buyer.com</Attachment>
Please see attached image for my idea of what this should look like

</Comments>

E-commerce network hubs receive the attachments, and they can forward them to the
supplier or store them for online retrieval.

For more information about the MIME standard, see the following Websites:

www.hunnysoft.com/mime
www.rad.com/networks/1995/mime/mime.htm

New shipComplete Attribute

shipComplete is a new optional attribute to the OrderRequestHeader element that instructs
suppliers to fill an order only when all items are available. This attribute prevents
partial item shipments.

<OrderRequest>
<OrderRequestHeader

orderID="DO1234"
orderDate="2000-03-12T13:30:23+8.00"
type="new"
requisitionID="R4321"
shipComplete="yes">

<Total>
<Money currency="USD">12.34</Money>

</Total>
<ShipTo>
. . .
</ShipTo>

</OrderRequestHeader>
<ItemOut>
. . .
</ItemOut>

</OrderRequest>

New ShortName Element

ShortName is a new, optional element within Item Description elements.

<Description xml:lang="en-US">
<ShortName>Big Computer</ShortName>

For more information:

“Attachment
Transmission” on
page 51

For more information:

“OrderRequestHeader”
on page 65

http://www.hunnysoft.com/mime
http://www.rad.com/networks/1995/mime/mime.htm

New Purchase Order Status Transaction Appendix B New Features in cXML 1.1

108 cXML User’s Guide June, 2000

This wonder contains three really big disks, four CD-ROM drives, two Zip drives, an
Ethernet card, much more memory than you could ever use, four CPUs on two
motherboards. We’ll throw in two monitors, a keyboard and the cheapest mouse we
can find lying around.

</Description>

ShortName is a short (30-character recommended, 50-character maximum) name for
the item, which fits product lists presented to users. Previously, because there was
only a Description element, long descriptions were truncated at unknown points.

Procurement applications and other cXML clients should display ShortName instead
of a truncation of the Description text in any space-restricted fields. If no ShortName is
provided, cXML clients can continue to truncate the Description text.

Catalog creators should not use ShortName to duplicate the information in Description.
Instead, they should use ShortName to name the product, and Description to describe
product details.

CIF 3.0 catalog format has also been enhanced to support ShortName. The CIF field
name is Short Name.

New Purchase Order Status Transaction

cXML 1.1 introduces a new transaction for sending the status of purchase orders to e-
commerce network hubs.

This transaction relies upon the new DocumentReference element, which associates the
status update with the OrderRequest most recently received from the buyer.

New DocumentReference Element

The new DocumentReference element associates a status update with a particular
OrderRequest document.

<DocumentReference
payloadID="0c300508b7863dcclb_14999"

</DocumentReference>

The new StatusUpdateRequest transaction uses this element.

For more information:

“ItemDetail” on page 80

For more information:

“DocumentReference”
on page 81

cXML User’s Guide 109

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

B
 N

ew
 F

ea
tu

re
s

in

cX
M

L
1.

1
B

 N
ew

 F
ea

tu
re

s
in

cX

M
L

1.
1

Appendix B New Features in cXML 1.1 New Purchase Order Status Transaction

New StatusUpdateRequest Transaction

Order-processing partners (such as fax or EDI service providers) send the new
StatusUpdateRequest transaction to e-commerce network hubs to set purchase order
status. It affects the order status indicator on the hub, which is visible to both buyers
and suppliers. Additionally, suppliers can send this transaction to allow buyers to see
the status of document processing within the supplier’s organization.

Note: This transaction informs interested parties about changes in the
delivery and processing status of purchase order documents, not the
shipping status of actual items.

One change is of particular significance: When an intermediate hub successfully
forwards an OrderRequest document, it can inform the original sender or a previous
hub about that success. Transitions through various queues and processing steps at a
supplier or hub might also be significant to the buyer.

New Followup Element

Followup is an element within OrderRequestHeader that specifies the URL to which
future StatusUpdateRequest documents should be posted. This location is the input
location for any later documents which reference the current OrderRequest document.

For more information:

“StatusUpdateRequest”
on page 82

For more information:

“Followup” on page 69

New Purchase Order Status Transaction Appendix B New Features in cXML 1.1

110 cXML User’s Guide June, 2000

cXML User’s Guide 111

 I
nd

ex
 I

nd
ex

 I
nd

ex
 I

nd
ex

 I
n

d
ex

 I
n

d
ex

A
Accounting element 72
Attachment element 69
attachments to purchase orders 43

B
BillTo element 67
booking orders 18
BrowserFormPost element 75
buyer and supplier cookies 27, 36
BuyerCookie element 75, 77

C
character encoding 50
Charge element 73
Classification element 20
code attribute 55
Comments element 69
Contact element 68
Contract element 88
cookies, buyer and supplier 27, 36
corporateURL attribute 84
Credential element 53
cXML element 48
cxml.org Website 7
cXML-base64 hidden field 34, 60
cXML-urlencoded hidden field 34, 60

D
date and time format 49
deploymentMode attribute 54, 58
Description element 20, 80

Distribution element 72
DocumentReference element 81
domain attribute 53
DTDs (Document Type Definitions) 7

E
EDI (X.12 Electronic Data Interchange) 4
editors for XML 9
effectiveDate attribute 64, 88
encoding, character 50
expirationDate attribute 88
Extrinsic element 24, 36, 70, 75

F
Followup element 69
form encoding 34, 60
From element 22
From, To, and Sender elements 53

G
GetPendingRequest element 96
GetPendingResponse element 96

H
Header element 52
HTML form encoding 34, 60

I
id attribute 73
Index element 86

Index

112 cXML User’s Guide June, 2000

 Index

IndexItemAdd element 86
IndexItemDelete element 86
IndexItemDetail element 87
IndexItemPunchout element 86
inReplyTo attribute 58
IsoCountryCode element 62
IsoLanguageCode element 62
ItemDetail element 80, 87
ItemID element 79
ItemIn element 79
ItemOut element 70
ItemSegment element 88

L
language, in cXML header 28
lastReceivedTimestamp attribute 96
Launch Page 28
lineNumber attribute 70, 79
locale, in cXML header 28

M
maxMessages attribute 96
Message element 58
MIME attachments 43, 50

O
operation attribute 22, 74
operationAllowed attribute 78
Order Receiver Page 35
orderDate attribute 67
orderID attribute 67
OrderMethods element 85
OrderRequest element 65
OrderRequestHeader element 65

P
payloadID attribute 22, 48, 81
Payment element 68
pinging servers with the Profile transaction 8
Profile transaction 8
ProfileRequest element 63

ProfileResponse element 63
PunchoutDetail element 87
PunchOutOrderMessage 25
PunchOutOrderMessage element 77
PunchOutOrderMessageHeader element 78
PunchOutSetupRequest 21
PunchOutSetupRequest element 74
PunchOutSetupResponse 25
PunchOutSetupResponse element 76
purchase orders 39–43

attachments 43

Q
quantity attribute 70, 79
quoting orders 17

R
Request element 54
requestedDeliveryDate attribute 70
requestName attribute 65
requisitionID attribute 67, 70
Response element 54
role attribute 68

S
segmentKey attribute 88
SelectedItem element 24, 75
Sender element 22
Sender Page 32
Sender, To, and From elements 53
shipComplete attribute 67
Shipping element 68
ShipTo element 67
ShortName element 80
Start Page 31
StartPage element 76
Status element 54
StatusUpdateRequest element 82
storeFrontURL attribute 84
Subscription element 93
SubscriptionContentRequest element 94
SubscriptionContentResponse element 94

cXML User’s Guide 113

 I
nd

ex
 I

nd
ex

 I
nd

ex
 I

nd
ex

 I
n

d
ex

 I
n

d
ex

 Index

SubscriptionListRequest element 93
SubscriptionListResponse element 93
supplier and buyer cookies 27, 36
Supplier element 84
SupplierChangeMessage element 91
SupplierDataRequest element 90
SupplierDataResponse element 90
SupplierID element 20
SupplierListRequest element 89
SupplierListResponse element 89
SupplierLocation element 85
SupplierPartAuxiliaryID element (Supplier

Cookie) 27, 36, 87
SupplierSetup element 76
SupplierSetup URL 24

T
Tax element 68
time and date format 49
timestamp attribute 22, 48
To element 22
To, From, and Sender elements 53
tools for working with XML 9
Total element 67
Transaction element 64
type attribute 53

U
Unit of Measure 27, 62
URL element 63
URL-encoded 60
utilities for use with XML 9

V
validating cXML 7
version attribute 48

X
XML 14
xml:lang 28
xmllanguageCode element 62

www.cxml.org

	Preface
	Audience and Prerequisites
	Which Chapters to Read

	Chapter 1 Introduction to cXML
	cXML Capabilities
	Catalogs
	Punchout
	Purchase Orders

	Types of Applications that Use cXML
	Procurement Applications
	Commerce Network Platforms
	Punchout Catalogs
	Order-Receiving Systems

	Content Delivery Strategy
	Validation Against DTDs
	Getting cXML DTDs
	Performing Validation

	Profile Transaction
	XML Utilities

	Chapter 2 Implementing a Punchout Site
	Punchout Requirements
	Buying Organizations
	Suppliers

	Punchout Event Sequence
	Steps 1 & 2: Punchout Request
	Step 3: Product Selection
	Step 4: Check Out
	Step 5: Transmittal of Purchase Order

	Punchout Documents
	Punchout Index Catalog
	PunchOutSetupRequest
	PunchOutSetupResponse
	PunchOutOrderMessage

	Modifications to Your Web Pages
	Launch Page
	Start Page
	Sender Page
	Order Receiver Page

	Punchout Website Suggestions
	Implementation Guidelines
	Buyer and Supplier Cookies
	Personalization

	Chapter 3 Receiving cXML Purchase Orders
	Purchase Order Process
	Receiving Purchase Orders
	OrderRequest
	OrderResponse

	Accepting Order Attachments

	Appendix A cXML Language Specification
	Protocol Specification
	Request-Response Model
	XML Conventions
	cXML Envelope
	Wrapping Layers
	Header
	Request
	Response
	One-Way (Asynchronous) Model

	Basic Elements
	Type Entities
	Base Elements

	Profile Transaction
	ProfileRequest
	ProfileResponse

	Order Definitions
	OrderRequest
	Response to an OrderRequest

	Punchout Transaction
	PunchOutSetupRequest
	PunchOutSetupResponse
	PunchOutOrderMessage

	Later Status Changes
	DocumentReference
	StatusUpdateRequest

	Catalog Definitions
	Supplier
	Index
	Contract

	Subscription Management Definitions
	Supplier Data
	Catalog Subscriptions

	Message Retrieval Definitions
	GetPendingRequest
	GetPendingResponse

	Appendix B New Features in cXML�1.1
	General Changes to cXML
	Improved Multi-Language Support
	Centralized DTDs
	New Profile Transaction
	New Status Codes
	New type Attribute for Marketplace Members

	Changes to Extrinsics
	New Contact Element
	requisitionID Attribute Supported
	Summary of Moved Extrinsic Information
	Header-Level Extrinsics

	Punchout Transaction Improvements
	Improved PunchOutSetupRequest
	SelectedItem Element
	Empty PunchOutOrderMessage
	New cXML-base64 Hidden Field

	New Purchase Order Features
	New lineNumber Attribute
	Purchase Order Attachments
	New shipComplete Attribute
	New ShortName Element

	New Purchase Order Status Transaction
	New DocumentReference Element
	New StatusUpdateRequest Transaction
	New Followup Element
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	X

	Index

